Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra
HTML articles powered by AMS MathViewer
- by Gabriel Acosta, Thomas Apel, Ricardo G. Durán and Ariel L. Lombardi;
- Math. Comp. 80 (2011), 141-163
- DOI: https://doi.org/10.1090/S0025-5718-2010-02406-8
- Published electronically: July 29, 2010
- PDF | Request permission
Abstract:
We prove optimal order error estimates for the Raviart-Thomas interpolation of arbitrary order under the maximum angle condition for triangles and under two generalizations of this condition, namely, the so-called three-dimensional maximum angle condition and the regular vertex property, for tetrahedra.
Our techniques are different from those used in previous papers on the subject, and the results obtained are more general in several aspects. First, intermediate regularity is allowed; that is, for the Raviart-Thomas interpolation of degree $k\ge 0$, we prove error estimates of order $j+1$ when the vector field being approximated has components in $W^{j+1,p}$, for triangles or tetrahedra, where $0\le j \le k$ and $1\le p \le \infty$. These results are new even in the two-dimensional case. Indeed, the estimate was known only in the case $j=k$. On the other hand, in the three-dimensional case, results under the maximum angle condition were known only for $k=0$.
References
- Gabriel Acosta and Ricardo G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations, SIAM J. Numer. Anal. 37 (1999), no. 1, 18–36. MR 1721268, DOI 10.1137/S0036142997331293
- Thomas Apel, Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. MR 1716824
- D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32 (English, with French summary). MR 813687, DOI 10.1051/m2an/1985190100071
- I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214–226. MR 455462, DOI 10.1137/0713021
- A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez, and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes, SIAM J. Numer. Anal. 32 (1995), no. 4, 1280–1295. MR 1342293, DOI 10.1137/0732059
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Franco Brezzi, Michel Fortin, and Rolf Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 1 (1991), no. 2, 125–151. MR 1115287, DOI 10.1142/S0218202591000083
- A. Buffa, M. Costabel, and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains, Numer. Math. 101 (2005), no. 1, 29–65. MR 2194717, DOI 10.1007/s00211-005-0607-4
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52. MR 771029, DOI 10.1090/S0025-5718-1985-0771029-9
- Ricardo G. Durán, Error estimates for anisotropic finite elements and applications, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 1181–1200. MR 2275724
- Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, and Michel Fortin, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, vol. 1939, Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006; Edited by Boffi and Lucia Gastaldi. MR 2459075, DOI 10.1007/978-3-540-78319-0
- Ricardo Durán and Elsa Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp. 58 (1992), no. 198, 561–573. MR 1106965, DOI 10.1090/S0025-5718-1992-1106965-0
- Ricardo G. Durán and Ariel L. Lombardi, Error estimates for the Raviart-Thomas interpolation under the maximum angle condition, SIAM J. Numer. Anal. 46 (2008), no. 3, 1442–1453. MR 2391001, DOI 10.1137/060665312
- Mohamed Farhloul, Serge Nicaise, and Luc Paquet, Some mixed finite element methods on anisotropic meshes, M2AN Math. Model. Numer. Anal. 35 (2001), no. 5, 907–920. MR 1866274, DOI 10.1051/m2an:2001142
- Pierre Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 10 (1976), no. no. , no. R-1, 43–60 (French, with English summary). MR 455282
- Michal Křížek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal. 29 (1992), no. 2, 513–520. MR 1154279, DOI 10.1137/0729031
- Luisa Donatella Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1985), no. 3, 493–496. MR 787572, DOI 10.1137/0722029
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- J. L. Synge, The hypercircle in mathematical physics: a method for the approximate solution of boundary value problems, Cambridge University Press, New York, 1957. MR 97605
- J.-M. Thomas, Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes, Thèse d’Etat, Université Pierre et Marie Curie, Paris, 1977.
Bibliographic Information
- Gabriel Acosta
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina. Member of CONICET, Argentina.
- Email: gacosta@dm.uba.ar
- Thomas Apel
- Affiliation: Institut für Mathematik und Bauinformatik, Universität der Bundeswehr München, Neubiberg, Germany.
- Email: thomas.apel@unibw.de
- Ricardo G. Durán
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina. Member of CONICET, Argentina.
- ORCID: 0000-0003-1349-3708
- Email: rduran@dm.uba.ar
- Ariel L. Lombardi
- Affiliation: Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina. Member of CONICET, Argentina.
- Email: aldoc7@dm.uba.ar
- Received by editor(s): September 11, 2008
- Received by editor(s) in revised form: May 2, 2009
- Published electronically: July 29, 2010
- Additional Notes: The work of the first author was supported by Deutsche Forschungsgemeinschaft, Grant AP 72/3-1 and by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, Grant PAV–120
The first, third and fourth authors were partially supported by ANPCyT, under grants PICT 2007-910, PICT 2005-33617, and PICT 2007-01307, and by Universidad de Buenos Aires, under Grant X070. - © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 141-163
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2010-02406-8
- MathSciNet review: 2728975