An optimal adaptive mixed finite element method
HTML articles powered by AMS MathViewer
- by Carsten Carstensen and Hella Rabus PDF
- Math. Comp. 80 (2011), 649-667
Abstract:
Various applications in fluid dynamics and computational continuum mechanics motivate the development of reliable and efficient adaptive algorithms for mixed finite element methods. In order to save degrees of freedom, not all but just a selection of finite element domains are refined. Hence the fundamental question of convergence as well as the question of optimality require new mathematical arguments. The presented adaptive algorithm for Raviart-Thomas mixed finite element methods solves the Poisson model problem, with optimal convergence rate.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385–395. MR 1414415, DOI 10.1007/s002110050222
- Douglas N. Arnold and Richard S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), no. 6, 1276–1290. MR 1025088, DOI 10.1137/0726074
- Ivo Babuška and Theofanis Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. MR 1857191
- C. Bahriawati and C. Carstensen, Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control, Comput. Methods Appl. Math. 5 (2005), no. 4, 333–361. MR 2194203, DOI 10.2478/cmam-2005-0016
- Roland Becker and Shipeng Mao, An optimally convergent adaptive mixed finite element method, Numer. Math. 111 (2008), no. 1, 35–54. MR 2448202, DOI 10.1007/s00211-008-0180-8
- Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, DOI 10.1007/s00211-003-0492-7
- Peter Binev and Ronald DeVore, Fast computation in adaptive tree approximation, Numer. Math. 97 (2004), no. 2, 193–217. MR 2050076, DOI 10.1007/s00211-003-0493-6
- Dietrich Braess, Finite elements, 2nd ed., Cambridge University Press, Cambridge, 2001. Theory, fast solvers, and applications in solid mechanics; Translated from the 1992 German edition by Larry L. Schumaker. MR 1827293
- S. C. Brenner and C. Carstensen. Finite Element Methods, Chapter 4, In E. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, John Wiley and Sons, 2004.
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- C. Carstensen. Three remarks on the convergence of adaptive finite element methods. In preparation.
- Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. MR 1408371, DOI 10.1090/S0025-5718-97-00837-5
- C. Carstensen, A unifying theory of a posteriori finite element error control, Numer. Math. 100 (2005), no. 4, 617–637. MR 2194587, DOI 10.1007/s00211-004-0577-y
- Carsten Carstensen, Convergence of adaptive finite element methods in computational mechanics, Appl. Numer. Math. 59 (2009), no. 9, 2119–2130. MR 2532857, DOI 10.1016/j.apnum.2008.12.006
- Carsten Carstensen and Sören Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM, Math. Comp. 71 (2002), no. 239, 945–969. MR 1898741, DOI 10.1090/S0025-5718-02-01402-3
- Carsten Carstensen and Ronald H. W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method, Numer. Math. 103 (2006), no. 2, 251–266. MR 2222810, DOI 10.1007/s00211-005-0658-6
- Carsten Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comp. 75 (2006), no. 255, 1033–1042. MR 2219017, DOI 10.1090/S0025-5718-06-01829-1
- Carsten Carstensen, Antonio Orlando, and Jan Valdman, A convergent adaptive finite element method for the primal problem of elastoplasticity, Internat. J. Numer. Methods Engrg. 67 (2006), no. 13, 1851–1887. MR 2260632, DOI 10.1002/nme.1686
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- Long Chen, Michael Holst, and Jinchao Xu, Convergence and optimality of adaptive mixed finite element methods, Math. Comp. 78 (2009), no. 265, 35–53. MR 2448696, DOI 10.1090/S0025-5718-08-02155-8
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational differential equations, Cambridge University Press, Cambridge, 1996. MR 1414897
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Luisa Donatella Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1985), no. 3, 493–496. MR 787572, DOI 10.1137/0722029
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, DOI 10.1137/S0036144502409093
- Pedro Morin, Kunibert G. Siebert, and Andreas Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707–737. MR 2413035, DOI 10.1142/S0218202508002838
- P. Neittaanmäki and S. Repin, Reliable methods for computer simulation, Studies in Mathematics and its Applications, vol. 33, Elsevier Science B.V., Amsterdam, 2004. Error control and a posteriori estimates. MR 2095603
- Roland Becker and Rolf Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. 10 (2001), 1–102. MR 2009692, DOI 10.1017/S0962492901000010
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- Rob Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), no. 261, 227–241. MR 2353951, DOI 10.1090/S0025-5718-07-01959-X
- R. Verfürth. A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Advances in Numerical Mathematics. Wiley-Teubner, 1996.
Additional Information
- Carsten Carstensen
- Affiliation: Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany and Department of Computational Science and Engineering, Yonsei University, 120-749 Seoul, Korea
- Email: cc@mathematik.hu-berlin.de
- Hella Rabus
- Affiliation: Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Email: rabus@mathematik.hu-berlin.de
- Received by editor(s): September 16, 2008
- Received by editor(s) in revised form: July 26, 2009, and November 16, 2009
- Published electronically: August 16, 2010
- Additional Notes: The first author was partly supported by the Hausdorff Institute of Mathematics in Bonn, Germany and by the WCU program through KOSEF (R31-2008-000-10049-0)
The second author was partly supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin, Germany and the DFG research group 797 ‘Analysis and Computation of Microstructure in Finite Plasticity’ - © Copyright 2010 Carsten Carstensen and Hella Rabus
- Journal: Math. Comp. 80 (2011), 649-667
- MSC (2010): Primary 65N12, 65N15, 65N30, 65N50, 65Y20
- DOI: https://doi.org/10.1090/S0025-5718-2010-02397-X
- MathSciNet review: 2772091