Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes Problem
HTML articles powered by AMS MathViewer
- by Hagen Eichel, Lutz Tobiska and Hehu Xie PDF
- Math. Comp. 80 (2011), 697-722 Request permission
Abstract:
The supercloseness and superconvergence properties of stabilized finite element methods applied to the Stokes problem are studied. We consider consistent residual based stabilization methods as well as inconsistent local projection type stabilizations. Moreover, we are able to show the supercloseness of the linear part of the MINI-element solution which has been previously observed in practical computations. The results on supercloseness hold on three-directional triangular, axiparallel rectangular, and brick-type meshes, respectively, but extensions to more general meshes are also discussed. Applying an appropriate postprocess to the computed solution, we establish superconvergence results. Numerical examples illustrate the theoretical predictions.References
- D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), no. 4, 337–344 (1985). MR 799997, DOI 10.1007/BF02576171
- Randolph E. Bank and Jinchao Xu, Asymptotically exact a posteriori error estimators. I. Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294–2312. MR 2034616, DOI 10.1137/S003614290139874X
- R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo 38 (2001), no. 4, 173–199. MR 1890352, DOI 10.1007/s10092-001-8180-4
- H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math. 49 (1986), no. 1, 11–37. MR 847015, DOI 10.1007/BF01389427
- M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6, 2544–2566. MR 2206447, DOI 10.1137/050631227
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, Efficient solutions of elliptic systems (Kiel, 1984) Notes Numer. Fluid Mech., vol. 10, Friedr. Vieweg, Braunschweig, 1984, pp. 11–19. MR 804083
- C. Chen and Y. Huang, High accuracy theory of finite element methods, Hunan Science and Technology Press, Hunan, China, 1995.
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Leopoldo P. Franca and Sérgio L. Frey, Stabilized finite element methods. II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 99 (1992), no. 2-3, 209–233. MR 1186727, DOI 10.1016/0045-7825(92)90041-H
- Sashikumaar Ganesan, Gunar Matthies, and Lutz Tobiska, Local projection stabilization of equal order interpolation applied to the Stokes problem, Math. Comp. 77 (2008), no. 264, 2039–2060. MR 2429873, DOI 10.1090/S0025-5718-08-02130-3
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Peter Hansbo and Anders Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 84 (1990), no. 2, 175–192. MR 1087615, DOI 10.1016/0045-7825(90)90116-4
- Thomas J. R. Hughes, Leopoldo P. Franca, and Marc Balestra, A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg. 59 (1986), no. 1, 85–99. MR 868143, DOI 10.1016/0045-7825(86)90025-3
- T. J. R. Hughes, L. P. Franca, and M. Balestra, Errata: “A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations”, Comput. Methods Appl. Mech. Engrg. 62 (1987), no. 1, 111. MR 889303, DOI 10.1016/0045-7825(87)90092-2
- Yongdeok Kim and Sungyun Lee, Modified Mini finite element for the Stokes problem in $\textbf {R}^2$ or $\textbf {R}^3$, Adv. Comput. Math. 12 (2000), no. 2-3, 261–272. MR 1745116, DOI 10.1023/A:1018973303935
- Jia-fu Lin and Qun Lin, Extrapolation of the Hood-Taylor elements for the Stokes problem, Adv. Comput. Math. 22 (2005), no. 2, 115–123. MR 2126582, DOI 10.1007/s10444-004-1089-0
- Q. Lin, J. Li, and A. Zhou, A rectangle test for the Stokes problem, Proceedings of Systems Science & Systems Engineering, Great Wall (H. K.) Culture Publish Co., 1991, pp. 240–241.
- Q. Lin and J. Lin, Finite element methods: Accuracy and improvement, China Sci. Tech. Press, 2005.
- Q. Lin and J. Pan, Global superconvergence for rectangular elements in the Stokes problem, Proceedings of Systems Science & Systems Engineering, Great Wall (H. K.) Culture Publish Co., 1991, pp. 371–378.
- Q. Lin and H. Xie, A type of finite element gradient recovery method based on vertex-edge-face interpolation: The recovery technique and superconvergence property, Tech. report, LSEC, CAS, Beijing, 2009.
- Qun Lin and Jinchao Xu, Linear finite elements with high accuracy, J. Comput. Math. 3 (1985), no. 2, 115–133. MR 854355
- Q. Lin and N. Yan, The construction and analysis of high efficiency finite element methods, HeBei University Publishers, 1995.
- Q. Lin and Q. Zhu, Preproceesing and postprocessing for the finite element method (in Chinese), Shanghai Scientific & Technical Press, 1994.
- G. Matthies, P. Skrzypacz, and L. Tobiska, Superconvergence of a 3D finite element method for stationary Stokes and Navier-Stokes problems, Numer. Methods Partial Differential Equations 21 (2005), no. 4, 701–725. MR 2140564, DOI 10.1002/num.20058
- Gunar Matthies, Piotr Skrzypacz, and Lutz Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal. 41 (2007), no. 4, 713–742. MR 2362912, DOI 10.1051/m2an:2007038
- Kamel Nafa and Andrew J. Wathen, Local projection stabilized Galerkin approximations for the generalized Stokes problem, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 5-8, 877–883. MR 2498529, DOI 10.1016/j.cma.2008.10.017
- L. A. Oganesjan and L. A. Ruhovec, An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat i Mat. Fiz. 9 (1969), 1102–1120 (Russian). MR 295599
- Friedhelm Schieweck, Uniformly stable mixed $hp$-finite elements on multilevel adaptive grids with hanging nodes, M2AN Math. Model. Numer. Anal. 42 (2008), no. 3, 493–505. MR 2423796, DOI 10.1051/m2an:2008014
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity pressure elements, Comput. Methods Appl. Mech. Eng. 95 (1992), 221–242.
- Lutz Tobiska and Gert Lube, A modified streamline diffusion method for solving the stationary Navier-Stokes equation, Numer. Math. 59 (1991), no. 1, 13–29. MR 1103751, DOI 10.1007/BF01385768
- Lutz Tobiska and Rüdiger Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 107–127. MR 1377246, DOI 10.1137/0733007
- R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309–325. MR 993474, DOI 10.1007/BF01390056
- Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050, DOI 10.1007/BFb0096835
- Junping Wang and Xiu Ye, Superconvergence of finite element approximations for the Stokes problem by projection methods, SIAM J. Numer. Anal. 39 (2001), no. 3, 1001–1013. MR 1860454, DOI 10.1137/S003614290037589X
- Jinchao Xu and Zhimin Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139–1152. MR 2047081, DOI 10.1090/S0025-5718-03-01600-4
- N. Yan, Superconvergence analysis and a posteriori error estimation in finite element methods, Science Press, Beijing, 2008.
- Z. Zhang, Recovery Techniques in Finite Element Methods, Adaptive Computations: Theory and Algorithms (Tao Tang and Jinchao Xu, eds.), Mathematics Monograph Series 6, Science Publisher, 2007, pp. 333–412.
- Zhimin Zhang and Ahmed Naga, A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput. 26 (2005), no. 4, 1192–1213. MR 2143481, DOI 10.1137/S1064827503402837
- Aihui Zhou, An analysis of some high accuracy finite element methods for hyperbolic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 1014–1028. MR 1860455, DOI 10.1137/S0036142999362894
- Ai Hui Zhou and Qun Lin, Optimal and superconvergence estimates of the finite element method for a scalar hyperbolic equation, Acta Math. Sci. (English Ed.) 14 (1994), no. 1, 90–94. MR 1280088, DOI 10.1016/S0252-9602(18)30094-8
- O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337–357. MR 875306, DOI 10.1002/nme.1620240206
- O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1331–1364. MR 1161557, DOI 10.1002/nme.1620330702
Additional Information
- Hagen Eichel
- Affiliation: Institute for Analysis and Computational Mathematics, Otto-von-Guericke University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
- Email: hagen.eichel@st.ovgu.de
- Lutz Tobiska
- Affiliation: Institute for Analysis and Computational Mathematics, Otto-von-Guericke University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
- Email: tobiska@ovgu.de
- Hehu Xie
- Affiliation: LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
- Address at time of publication: Institute for Analysis and Computational Mathematics, Otto-von-Guericke University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
- Email: hhxie@lsec.cc.ac.cn
- Received by editor(s): August 3, 2009
- Received by editor(s) in revised form: December 10, 2009
- Published electronically: August 20, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 697-722
- MSC (2010): Primary 65N30; Secondary 76D07
- DOI: https://doi.org/10.1090/S0025-5718-2010-02404-4
- MathSciNet review: 2772093