## How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?

HTML articles powered by AMS MathViewer

- by Bernhard Beckermann, Valeriy Kalyagin, Ana C. Matos and Franck Wielonsky PDF
- Math. Comp.
**80**(2011), 931-958 Request permission

## Abstract:

In order to reduce the Gibbs phenomenon exhibited by the partial Fourier sums of a periodic function $f$, defined on $[-\pi ,\pi ]$, discontinuous at 0,

Driscoll and Fornberg considered so-called singular Fourier-Padé approximants constructed from the Hermite-Padé approximants of the system of functions $(1,g_{1} (z),g_{2} (z))$, where $g_{1} (z)=\log (1-z)$ and $g_{2} (z)$ is analytic, such that $\operatorname {Re}(g_{2} (e^{it}))=f (t)$. Convincing numerical experiments have been obtained by these authors, but no error estimates have been proven so far. In the present paper we study the special case of Nikishin systems and their Hermite-Padé approximants, both theoretically and numerically. We obtain rates of convergence by using orthogonality properties of the functions involved along with results from logarithmic potential theory. In particular, we address the question of how to choose the degrees of the approximants, by considering diagonal and row sequences, as well as linear Hermite-Padé approximants. Our theoretical findings and numerical experiments confirm that these Hermite-Padé approximants are more efficient than the more elementary Padé approximants, particularly around the discontinuity of the goal function $f$.

## References

- A. I. Aptekarev,
*Strong asymptotics of polynomials of simultaneous orthogonality for Nikishin systems*, Mat. Sb.**190**(1999), no. 5, 3–44 (Russian, with Russian summary); English transl., Sb. Math.**190**(1999), no. 5-6, 631–669. MR**1702555**, DOI 10.1070/SM1999v190n05ABEH000401 - George A. Baker Jr. and Peter Graves-Morris,
*Padé approximants. Part I*, Encyclopedia of Mathematics and its Applications, vol. 13, Addison-Wesley Publishing Co., Reading, Mass., 1981. Basic theory; With a foreword by Peter A. Carruthers. MR**635619** - Bernhard Beckermann, Ana C. Matos, and Franck Wielonsky,
*Reduction of the Gibbs phenomenon for smooth functions with jumps by the $\epsilon$-algorithm*, J. Comput. Appl. Math.**219**(2008), no. 2, 329–349. MR**2441229**, DOI 10.1016/j.cam.2007.11.011 - J.P. Boyd, Defeating Gibbs phenomenon in Fourier and Chebyshev spectral methods for solving differential equations, in Gibbs Phenomenon, A. Jerri, ed., Sampling Publishing, Potsdam, New York (2007).
- John P. Boyd and Jun Rong Ong,
*Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions. I. Single-interval schemes*, Commun. Comput. Phys.**5**(2009), no. 2-4, 484–497. MR**2513698** - C. Brezinski,
*Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon*, Numer. Algorithms**36**(2004), no. 4, 309–329. MR**2108182**, DOI 10.1007/s11075-004-2843-6 - M. S. Min, S. M. Kaber, and W. S. Don,
*Fourier-Padé approximations and filtering for spectral simulations of an incompressible Boussinesq convection problem*, Math. Comp.**76**(2007), no. 259, 1275–1290. MR**2299774**, DOI 10.1090/S0025-5718-07-01831-5 - Tobin A. Driscoll and Bengt Fornberg,
*A Padé-based algorithm for overcoming the Gibbs phenomenon*, Numer. Algorithms**26**(2001), no. 1, 77–92. MR**1827318**, DOI 10.1023/A:1016648530648 - Knut S. Eckhoff,
*Accurate and efficient reconstruction of discontinuous functions from truncated series expansions*, Math. Comp.**61**(1993), no. 204, 745–763. MR**1195430**, DOI 10.1090/S0025-5718-1993-1195430-1 - Knut S. Eckhoff,
*Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions*, Math. Comp.**64**(1995), no. 210, 671–690. MR**1265014**, DOI 10.1090/S0025-5718-1995-1265014-7 - Knut S. Eckhoff,
*On a high order numerical method for functions with singularities*, Math. Comp.**67**(1998), no. 223, 1063–1087. MR**1459387**, DOI 10.1090/S0025-5718-98-00949-1 - U. Fidalgo Prieto and G. López Lagomasino,
*Rate of convergence of generalized Hermite-Padé approximants of Nikishin systems*, Constr. Approx.**23**(2006), no. 2, 165–196. MR**2186304**, DOI 10.1007/s00365-004-0582-5 - A.A. Gonchar, E.A. Rakhmanov, On the convergence of simultaneous Padé approximants for systems of functions of Markov type,
*Proc. Steklov Inst. Math.*(1983), no. 3. - A.A. Gonchar, E.A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials,
*Math. USSR Sb.***53**(1986), 119-130. - A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin,
*On Hermite-Padé approximants for systems of functions of Markov type*, Mat. Sb.**188**(1997), no. 5, 33–58 (Russian, with Russian summary); English transl., Sb. Math.**188**(1997), no. 5, 671–696. MR**1478629**, DOI 10.1070/SM1997v188n05ABEH000225 - David Gottlieb and Chi-Wang Shu,
*On the Gibbs phenomenon and its resolution*, SIAM Rev.**39**(1997), no. 4, 644–668. MR**1491051**, DOI 10.1137/S0036144596301390 - S. Helsen and M. Van Barel,
*A numerical solution of the constrained energy problem*, J. Comput. Appl. Math.**189**(2006), no. 1-2, 442–452. MR**2202989**, DOI 10.1016/j.cam.2005.03.059 - George Kvernadze,
*Approximating the jump discontinuities of a function by its Fourier-Jacobi coefficients*, Math. Comp.**73**(2004), no. 246, 731–751. MR**2031403**, DOI 10.1090/S0025-5718-03-01594-1 - N. S. Landkof,
*Foundations of modern potential theory*, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR**0350027** - E.M. Nikishin, On simultaneous Padé approximations,
*Math. USSR Sb.***41**(1982), 409-425. - E.M. Nikishin, The asymptotic behavior of linear forms for joint Padé approximations,
*Soviet Math.***30**(1986). - E. M. Nikishin and V. N. Sorokin,
*Rational approximations and orthogonality*, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR**1130396**, DOI 10.1090/mmono/092 - Thomas Ransford,
*Potential theory in the complex plane*, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR**1334766**, DOI 10.1017/CBO9780511623776 - Edward B. Saff and Vilmos Totik,
*Logarithmic potentials with external fields*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR**1485778**, DOI 10.1007/978-3-662-03329-6 - Herbert Stahl and Vilmos Totik,
*General orthogonal polynomials*, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR**1163828**, DOI 10.1017/CBO9780511759420 - Vilmos Totik,
*Weighted approximation with varying weight*, Lecture Notes in Mathematics, vol. 1569, Springer-Verlag, Berlin, 1994. MR**1290789**, DOI 10.1007/BFb0076133 - Gábor Szegő,
*Orthogonal polynomials*, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR**0372517** - Peter Wynn,
*Transformations to accelerate the convergence of Fourier series*, Blanch Anniversary Volume, Aerospace Research Lab., U.S. Air Force, Washington, D.C., 1967, pp. 339–379. MR**0215553**

## Additional Information

**Bernhard Beckermann**- Affiliation: Laboratoire Mathématiques, P. Painlevé UMR CNRS 8524, Université de Lille 1, France
- Email: bbecker@math.univ-lille1.fr
**Valeriy Kalyagin**- Affiliation: Higher School of Economics Nizhny Novgorod, Russia
- Email: kalia@hse.nnov.ru
**Ana C. Matos**- Affiliation: Laboratoire Mathématiques, P. Painlevé UMR CNRS 8524, Université de Lille 1, France
- Email: Ana.Matos@math.univ-lille1.fr
**Franck Wielonsky**- Affiliation: Laboratoire Mathématiques, P. Painlevé UMR CNRS 8524, Université de Lille 1, France
- Email: Franck.Wielonsky@math.univ-lille1.fr
- Received by editor(s): July 7, 2009
- Received by editor(s) in revised form: January 15, 2010
- Published electronically: September 27, 2010
- Additional Notes: This work was supported by INTAS network NeCCA 03-51-6637 and partly by RFBR 08-01-00179
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp.
**80**(2011), 931-958 - MSC (2010): Primary 41A21, 41A20, 41A28, 42A16, 31C15, 31C20
- DOI: https://doi.org/10.1090/S0025-5718-2010-02411-1
- MathSciNet review: 2772102