Verifying a conjecture of L. Rédei for $p=13$
HTML articles powered by AMS MathViewer
- by Sándor Szabó PDF
- Math. Comp. 80 (2011), 1155-1162 Request permission
Abstract:
In 1970 L. Rédei conjectured that if an elementary $p$-group $G$ of order $p^3$ is a direct product of its subsets $A$ and $B$ such that both $A$ and $B$ contain the identity element of $G$, then at least one of the factors $A$ and $B$ cannot span the whole $G$. We will verify this conjecture for $p=13$.References
- D. E. Knuth, Dancing links, in Millennial Perspectives in Computer Science, J. Davies, B. Roscoe, and J. Woodcock, Eds., Palgrave Macmillan, Basingstoke, 2000, pp. 187–214.
- László Rédei, Lückenhafte Polynome über endlichen Körpern, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 42, Birkhäuser Verlag, Basel-Stuttgart, 1970 (German). MR 0294297
- Sándor Szabó, Topics in factorization of abelian groups, Birkhäuser Verlag, Basel, 2004. MR 2105798
- Sándor Szabó and Coburn Ward, Factoring elementary groups of prime cube order into subsets, Math. Comp. 67 (1998), no. 223, 1199–1206. MR 1451328, DOI 10.1090/S0025-5718-98-00929-6
- http://www.ttk.pte.hu/mii/alkmatematika/anyagok/demo.zip
Additional Information
- Sándor Szabó
- Affiliation: Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary
- Email: sszabo7@hotmail.com
- Received by editor(s): September 1, 2009
- Received by editor(s) in revised form: February 4, 2010
- Published electronically: September 17, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 1155-1162
- MSC (2010): Primary 20K01; Secondary 05B45, 52C22, 68R05
- DOI: https://doi.org/10.1090/S0025-5718-2010-02417-2
- MathSciNet review: 2772117