Stably free modules over $\mathbf {R}{[X]}$ of rank $> \dim \mathbf {R}$ are free
HTML articles powered by AMS MathViewer
- by Ihsen Yengui PDF
- Math. Comp. 80 (2011), 1093-1098 Request permission
Abstract:
We prove that for any finite-dimensional ring $\mathbf {R}$ and $n\geq \dim \mathbf {R} +2$, the group $\textrm {E}_{n}(\textbf {R}[X])$ acts transitively on $\textrm {Um}_{n}(\mathbf {R}[X])$. In particular, we obtain that for any finite-dimensional ring $\mathbf {R}$, all finitely generated stably free modules over $\mathbf {R}[X]$ of rank $> \dim \mathbf {R}$ are free. This result was only known for Noetherian rings. The proof we give is short, simple, and constructive.References
- Hyman Bass, Libération des modules projectifs sur certains anneaux de polynômes, Séminaire Bourbaki, 26e année (1973/1974), Exp. No. 448, Lecture Notes in Math., Vol. 431, Springer, Berlin, 1975, pp. 228–354 (French). MR 0472826
- Thierry Coquand, Henri Lombardi, and Claude Quitté, Generating non-Noetherian modules constructively, Manuscripta Math. 115 (2004), no. 4, 513–520. MR 2103665, DOI 10.1007/s00229-004-0509-2
- Thierry Coquand, Henri Lombardi, and Marie-Françoise Roy, An elementary characterization of Krull dimension, From sets and types to topology and analysis, Oxford Logic Guides, vol. 48, Oxford Univ. Press, Oxford, 2005, pp. 239–244. MR 2188647
- Afef Ellouz, Henri Lombardi, and Ihsen Yengui, A constructive comparison of the rings $R(X)$ and $R\langle X\rangle$ and application to the Lequain-Simis induction theorem, J. Algebra 320 (2008), no. 2, 521–533. MR 2422305, DOI 10.1016/j.jalgebra.2007.12.004
- T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842
- T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. MR 2235330, DOI 10.1007/978-3-540-34575-6
- Yves Lequain and Aron Simis, Projective modules over $R[X_{1},\cdots ,X_{n}]$, $R$ a Prüfer domain, J. Pure Appl. Algebra 18 (1980), no. 2, 165–171. MR 585221, DOI 10.1016/0022-4049(80)90127-9
- Henri Lombardi and Claude Quitté, Constructions cachées en algèbre abstraite: le principe local-global, Commutative ring theory and applications (Fez, 2001) Lecture Notes in Pure and Appl. Math., vol. 231, Dekker, New York, 2003, pp. 461–476 (French, with English and French summaries). MR 2029844
- H. Lombardi, C. Quitté, Algèbre commutative, Méthodes Constructives, to appear, available at \ttfamily http://hlombardi.free.fr/publis/A—PTFCours.html. An english version is to be published by Springer.
- Ray Mines, Fred Richman, and Wim Ruitenburg, A course in constructive algebra, Universitext, Springer-Verlag, New York, 1988. MR 919949, DOI 10.1007/978-1-4419-8640-5
- Abdessalem Mnif and Ihsen Yengui, An algorithm for unimodular completion over Noetherian rings, J. Algebra 316 (2007), no. 2, 483–498. MR 2356840, DOI 10.1016/j.jalgebra.2007.02.034
- Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, DOI 10.1007/BF01390008
- Ravi A. Rao, The Bass-Quillen conjecture in dimension three but characteristic $\not =2,3$ via a question of A. Suslin, Invent. Math. 93 (1988), no. 3, 609–618. MR 952284, DOI 10.1007/BF01410201
- Moshe Roitman, On stably extended projective modules over polynomial rings, Proc. Amer. Math. Soc. 97 (1986), no. 4, 585–589. MR 845969, DOI 10.1090/S0002-9939-1986-0845969-9
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
- J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, Secrétariat mathématique, Paris, 1958, pp. 18 (French). MR 0177011
- A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235–252, 477 (Russian). MR 0472792
- Ihsen Yengui, Making the use of maximal ideals constructive, Theoret. Comput. Sci. 392 (2008), no. 1-3, 174–178. MR 2394992, DOI 10.1016/j.tcs.2007.10.011
- Ihsen Yengui, The Hermite ring conjecture in dimension one, J. Algebra 320 (2008), no. 1, 437–441. MR 2417998, DOI 10.1016/j.jalgebra.2008.02.007
Additional Information
- Ihsen Yengui
- Affiliation: Department of Mathematics, Faculty of Sciences of Sfax, 3000 Sfax, Tunisia
- MR Author ID: 657905
- Email: ihsen.yengui@fss.rnu.tn
- Received by editor(s): June 13, 2009
- Published electronically: September 27, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 1093-1098
- MSC (2010): Primary 13C10, 19A13, 14Q20, 03F65
- DOI: https://doi.org/10.1090/S0025-5718-2010-02427-5
- MathSciNet review: 2772113