Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model
HTML articles powered by AMS MathViewer
- by V. Girault and F. Guillén-González PDF
- Math. Comp. 80 (2011), 781-819 Request permission
Abstract:
A linear fully discrete mixed scheme, using $C^0$ finite elements in space and a semi-implicit Euler scheme in time, is considered for solving a penalized nematic liquid crystal model (of the Ginzburg-Landau type). We prove: 1) unconditional stability and convergence towards weak solutions, and 2) first-order optimal error estimates for regular solutions (but without imposing the well-known global compatibility condition for the initial pressure in the Navier-Stokes framework). These results are valid in a general connected polygon or in a Lipschitz polyhedral domain (without any constraints on its angles).
Finally, since the scheme couples the unknowns, we propose several algorithms for decoupling the computation of these unknowns and establish their rates of convergence in convex domains when the mesh size is sufficiently small compared to the time step.
References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), no. 4, 337–344 (1985). MR 799997, DOI 10.1007/BF02576171
- Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179–192. MR 359352, DOI 10.1007/BF01436561
- Roland Becker, Xiaobing Feng, and Andreas Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal. 46 (2008), no. 4, 1704–1731. MR 2399392, DOI 10.1137/07068254X
- Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 123–148. MR 1261720, DOI 10.1007/BF01191614
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129–151 (English, with French summary). MR 365287
- Blanca Climent-Ezquerra, Francisco Guillén-González, and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. 57 (2006), no. 6, 984–998. MR 2279252, DOI 10.1007/s00033-005-0038-1
- Yun Mei Chen, The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 (1989), no. 1, 69–74. MR 990189, DOI 10.1007/BF01161995
- P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 17–351. MR 1115237
- Daniel Coutand and Steve Shkoller, Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 10, 919–924 (English, with English and French summaries). MR 1873808, DOI 10.1016/S0764-4442(01)02161-9
- Monique Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory 15 (1992), no. 2, 227–261. MR 1147281, DOI 10.1007/BF01204238
- Monique Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no. 1, 74–97. MR 977489, DOI 10.1137/0520006
- Vivette Girault and Jacques-Louis Lions, Two-grid finite-element schemes for the transient Navier-Stokes problem, M2AN Math. Model. Numer. Anal. 35 (2001), no. 5, 945–980. MR 1866277, DOI 10.1051/m2an:2001145
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Francisco Guillén-González and Marko Rojas-Medar, Global solution of nematic liquid crystals models, C. R. Math. Acad. Sci. Paris 335 (2002), no. 12, 1085–1090 (English, with English and French summaries). MR 1955593, DOI 10.1016/S1631-073X(02)02620-1
- F. Guillén-González, M. A. Rodríguez-Bellido, and M. A. Rojas-Medar, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model, Math. Nachr. 282 (2009), no. 6, 846–867. MR 2530884, DOI 10.1002/mana.200610776
- Guillén-González, F., Gutiérrez-Santacreu, J. V., A linear mixed finite element scheme for a nematic Eriksen-Leslie liquid crystal model. Submitted.
- Guillén-González, F., Tierra-Chica, G., On pressure error estimates for linear mixed finite element schemes applied to some incompressible fluid models. In preparation.
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Functional Analysis 21 (1976), no. 4, 397–431. MR 0404849, DOI 10.1016/0022-1236(76)90035-5
- Fang-Hua Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math. 42 (1989), no. 6, 789–814. MR 1003435, DOI 10.1002/cpa.3160420605
- Fang-Hua Lin and Chun Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math. 48 (1995), no. 5, 501–537. MR 1329830, DOI 10.1002/cpa.3160480503
- Fang-Hua Lin and Chun Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal. 154 (2000), no. 2, 135–156. MR 1784963, DOI 10.1007/s002050000102
- Ping Lin and Chun Liu, Simulations of singularity dynamics in liquid crystal flows: a $C^0$ finite element approach, J. Comput. Phys. 215 (2006), no. 1, 348–362. MR 2215659, DOI 10.1016/j.jcp.2005.10.027
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Lions, J. L. and Magenes, E., Problèmes aux Limites non Homogènes et Applications, I, Dunod, Paris, 1968.
- Chun Liu and Noel J. Walkington, Mixed methods for the approximation of liquid crystal flows, M2AN Math. Model. Numer. Anal. 36 (2002), no. 2, 205–222. MR 1906815, DOI 10.1051/m2an:2002010
- Chun Liu and Noel J. Walkington, Approximation of liquid crystal flows, SIAM J. Numer. Anal. 37 (2000), no. 3, 725–741. MR 1740379, DOI 10.1137/S0036142997327282
- Nečas, J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.
- Andreas Prohl, Computational micromagnetism, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 2001. MR 1885923, DOI 10.1007/978-3-663-09498-2
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Steve Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Comm. Partial Differential Equations 27 (2002), no. 5-6, 1103–1137. MR 1916558, DOI 10.1081/PDE-120004895
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI 10.1007/BF01762360
- Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. MR 603444
Additional Information
- V. Girault
- Affiliation: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
- F. Guillén-González
- Affiliation: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain
- MR Author ID: 326792
- Received by editor(s): February 11, 2009
- Received by editor(s) in revised form: March 1, 2010
- Published electronically: December 8, 2010
- Additional Notes: The second author was partially supported by DGI-MEC (Spain), Grant MTM2006–07932 and by Junta de Andalucía project P06-FQM-02373.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 781-819
- MSC (2010): Primary 35Q35, 65M12, 65M15, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-2010-02429-9
- MathSciNet review: 2772096