An effective bound for the Huber constant for cofinite Fuchsian groups
HTML articles powered by AMS MathViewer
- by J. S. Friedman, J. Jorgenson and J. Kramer PDF
- Math. Comp. 80 (2011), 1163-1196 Request permission
Abstract:
Let $\Gamma$ be a cofinite Fuchsian group acting on hyperbolic two-space $\mathbb {H}$. Let $M=\Gamma \setminus \mathbb {H}$ be the corresponding quotient space. For $\gamma$, a closed geodesic of $M$, let $l(\gamma )$ denote its length. The prime geodesic counting function $\pi _{M}(u)$ is defined as the number of $\Gamma$-inconjugate, primitive, closed geodesics $\gamma$ such that $e^{l(\gamma )} \leq u.$ The prime geodesic theorem states that: \[ \pi _M(u) = \sum _{0 \leq \lambda _{M,j} \leq 1/4} \operatorname {li}(u^{s_{M,j}}) + O_M \left (\frac {u^{3/4}}{\log u}\right ), \] where $0=\lambda _{M,0} < \lambda _{M,1} < \cdots$ are the eigenvalues of the hyperbolic Laplacian acting on the space of smooth functions on $M$ and $s_{M,j} = \frac {1}{2}+\sqrt {\frac {1}{4} - \lambda _{M,j} }$. Let $C_{M}$ be the smallest implied constant so that \[ \left |\pi _{M}(u)-\sum _{0 \leq \lambda _{M,j} \leq 1/4} \operatorname {li}(u^{s_{M,j}})\right | \leq C_{M}\frac {u^{3/4}}{\log {u}} \quad \text {for all $u > 1.$} \] We call the (absolute) constant $C_{M}$ the Huber constant.
The objective of this paper is to give an effectively computable upper bound of $C_{M}$ for an arbitrary cofinite Fuchsian group. As a corollary we bound the Huber constant for $PSL(2,\mathbb {Z})$, showing that $C_{M} \leq 16{,}607{,}349{,}020{,}658 \approx \exp (30.44086643)$.
References
- Johan Bosman, A polynomial with Galois group $\textrm {SL}_2(\Bbb F_{16})$, LMS J. Comput. Math. 10 (2007), 1461–1570. MR 2365691, DOI 10.1112/S1461157000001467
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619–716. MR 2218402
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI 10.1017/S1474748007000011
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224
- Robert Carls and David Lubicz, A $p$-adic quasi-quadratic time point counting algorithm, Int. Math. Res. Not. IMRN 4 (2009), 698–735. MR 2480098, DOI 10.1093/imrn/rnn143
- Antoine Chambert-Loir, Compter (rapidement) le nombre de solutions d’équations dans les corps finis, Astérisque 317 (2008), Exp. No. 968, vii, 39–90 (French, with French summary). Séminaire Bourbaki. Vol. 2006/2007. MR 2487730
- J.-M. Couveignes, Linearizing torsion classes in the Picard group of algebraic curves over finite fields, J. Algebra 321 (2009), no. 8, 2085–2118. MR 2501511, DOI 10.1016/j.jalgebra.2008.09.032
- Bas Edixhoven, On the computation of the coefficients of a modular form, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 30–39. MR 2282913, DOI 10.1007/11792086_{3}
- Bas Edixhoven, Gerard van der Geer, and Ben Moonen (eds.), Modular forms on Schiermonnikoog, Cambridge University Press, Cambridge, 2008. MR 2530982, DOI 10.1017/CBO9780511543371
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- Jürgen Fischer, An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Mathematics, vol. 1253, Springer-Verlag, Berlin, 1987. MR 892317, DOI 10.1007/BFb0077696
- Gérard Freixas i Montplet, An arithmetic Riemann-Roch theorem for pointed stable curves, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 2, 335–369 (English, with English and French summaries). MR 2518081, DOI 10.24033/asens.2098
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York-London, 1965. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin; Translated from the Russian by Scripta Technica, Inc; Translation edited by Alan Jeffrey. MR 0197789
- Hahn, T.: An arithmetic Riemann-Roch theorem for metrics with cusps. Ph.D. dissertation, Humboldt University, (2009).
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- Heinz Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1–26 (German). MR 109212, DOI 10.1007/BF01369663
- Heinz Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann. 142 (1960/61), 385–398 (German). MR 126549, DOI 10.1007/BF01451031
- Heinz Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann. 143 (1961), 463—464 (German). MR 154980, DOI 10.1007/BF01470758
- Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
- Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691, DOI 10.1090/gsm/053
- J. Jorgenson and J. Kramer, Bounds for special values of Selberg zeta functions of Riemann surfaces, J. Reine Angew. Math. 541 (2001), 1–28. MR 1876283, DOI 10.1515/crll.2001.092
- Jay Jorgenson and Jürg Kramer, On the error term of the prime geodesic theorem, Forum Math. 14 (2002), no. 6, 901–913. MR 1932525, DOI 10.1515/form.2002.040
- J. Jorgenson and J. Kramer, Bounds on canonical Green’s functions, Compos. Math. 142 (2006), no. 3, 679–700. MR 2231197, DOI 10.1112/S0010437X06001990
- Jay Jorgenson and Jürg Kramer, Bounds on Faltings’s delta function through covers, Ann. of Math. (2) 170 (2009), no. 1, 1–43. MR 2521110, DOI 10.4007/annals.2009.170.1
- Alan G. B. Lauder, A recursive method for computing zeta functions of varieties, LMS J. Comput. Math. 9 (2006), 222–269. MR 2261044, DOI 10.1112/S1461157000001261
- Burton Randol, The Riemann hypothesis for Selberg’s zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator, Trans. Amer. Math. Soc. 236 (1978), 209–223. MR 472728, DOI 10.1090/S0002-9947-1978-0472728-1
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Sarnak, P.: Prime geodesic theorems, Ph.D. thesis, Stanford University, 1980.
- Peter Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory 15 (1982), no. 2, 229–247. MR 675187, DOI 10.1016/0022-314X(82)90028-2
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- The PARI Group, Bordeaux, PARI/GP, version 2.1.7, 2005, available from http://pari.math.u-bordeaux.fr/.
- A. B. Venkov, Spectral theory of automorphic functions, Trudy Mat. Inst. Steklov. 153 (1981), 172 (Russian). MR 665585
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- P. G. Zograf, Fuchsian groups and small eigenvalues of the Laplace operator, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 122 (1982), 24–29, 163 (Russian, with English summary). Studies in topology, IV. MR 661463
Additional Information
- J. S. Friedman
- Affiliation: Department of Mathematics and Sciences, United States Merchant Marine Academy, 300 Steamboat Road, Kings Point, New York 11024
- MR Author ID: 772419
- Email: FriedmanJ@usmma.edu, joshua@math.sunysb.edu, CrownEagle@gmail.com
- J. Jorgenson
- Affiliation: Department of Mathematics, The City College of New York, Convent Avenue at 138th Street, New York, New York 10031
- MR Author ID: 292611
- Email: jjorgenson@mindspring.com
- J. Kramer
- Affiliation: Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
- MR Author ID: 227725
- Email: kramer@math.hu-berlin.de
- Received by editor(s): September 25, 2009
- Received by editor(s) in revised form: March 2, 2010
- Published electronically: October 28, 2010
- Additional Notes: The second named author acknowledges support from grants from the NSF and PSC-CUNY.
The third named author acknowledges support from the DFG Graduate School Berlin Mathematical School and from the DFG Research Training Group Arithmetic and Geometry. - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 1163-1196
- MSC (2010): Primary 11F72; Secondary 30F35
- DOI: https://doi.org/10.1090/S0025-5718-2010-02430-5
- MathSciNet review: 2772118