Subideal border bases
HTML articles powered by AMS MathViewer
- by Martin Kreuzer and Henk Poulisse PDF
- Math. Comp. 80 (2011), 1135-1154 Request permission
Abstract:
In modeling physical systems, it is sometimes useful to construct border bases of 0-dimensional polynomial ideals which are contained in the ideal generated by a given set of polynomials. We define and construct such subideal border bases, provide some basic properties and generalize a suitable variant of the Buchberger-Möller algorithm as well as the AVI-algorithm of Heldt, Kreuzer, Pokutta, and Poulisse to the subideal setting. The subideal version of the AVI-algorithm is then applied to an actual industrial problem.References
- John Abbott, Claudia Fassino, and Maria-Laura Torrente, Stable border bases for ideals of points, J. Symbolic Comput. 43 (2008), no. 12, 883–894. MR 2472538, DOI 10.1016/j.jsc.2008.05.002
- The Algebraic Oil Research Project, see http://www.fim.uni-passau.de/algebraic-oil
- \apcocoa: Applied Computations in Commutative Algebra, see http://www.apcocoa.org
- H. M. Möller and B. Buchberger, The construction of multivariate polynomials with preassigned zeros, Computer algebra (Marseille, 1982) Lecture Notes in Comput. Sci., vol. 144, Springer, Berlin-New York, 1982, pp. 24–31. MR 680050
- Daniel Heldt, Martin Kreuzer, Sebastian Pokutta, and Hennie Poulisse, Approximate computation of zero-dimensional polynomial ideals, J. Symbolic Comput. 44 (2009), no. 11, 1566–1591. MR 2561289, DOI 10.1016/j.jsc.2008.11.010
- Achim Kehrein and Martin Kreuzer, Characterizations of border bases, J. Pure Appl. Algebra 196 (2005), no. 2-3, 251–270. MR 2116166, DOI 10.1016/j.jpaa.2004.08.028
- Achim Kehrein, Martin Kreuzer, and Lorenzo Robbiano, An algebraist’s view on border bases, Solving polynomial equations, Algorithms Comput. Math., vol. 14, Springer, Berlin, 2005, pp. 169–202. MR 2161988, DOI 10.1007/3-540-27357-3_{4}
- M. Kreuzer, H. Poulisse, and L. Robbiano, From oil fields to Hilbert schemes, in: J. Abbott, L. Robbiano (eds.), Approximate Commutative Algebra, Springer-Verlag, Vienna, 2009, pp. 1–54.
- Martin Kreuzer and Lorenzo Robbiano, Computational commutative algebra. 1, Springer-Verlag, Berlin, 2000. MR 1790326, DOI 10.1007/978-3-540-70628-1
- Martin Kreuzer and Lorenzo Robbiano, Computational commutative algebra. 2, Springer-Verlag, Berlin, 2005. MR 2159476
- Martin Kreuzer and Lorenzo Robbiano, Deformations of border bases, Collect. Math. 59 (2008), no. 3, 275–297. MR 2452308, DOI 10.1007/BF03191188
- Kiyoshi Shirayanagi and Moss Sweedler, Remarks on automatic algorithm stabilization, J. Symbolic Comput. 26 (1998), no. 6, 761–765. Symbolic numeric algebra for polynomials. MR 1662034, DOI 10.1006/jsco.1998.0238
- Hans J. Stetter, Numerical polynomial algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2004. MR 2048781, DOI 10.1137/1.9780898717976
Additional Information
- Martin Kreuzer
- Affiliation: Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany
- Email: martin.kreuzer@uni-passau.de
- Henk Poulisse
- Affiliation: Harkenkamp 1a, D-30851 Langenhagen, Germany
- Email: henk.poulisse@gmail.com
- Received by editor(s): May 7, 2009
- Received by editor(s) in revised form: March 9, 2010
- Published electronically: November 1, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 1135-1154
- MSC (2010): Primary 13P10; Secondary 41A10, 65D05, 14Q99
- DOI: https://doi.org/10.1090/S0025-5718-2010-02432-9
- MathSciNet review: 2772116