## Subideal border bases

HTML articles powered by AMS MathViewer

- by Martin Kreuzer and Henk Poulisse PDF
- Math. Comp.
**80**(2011), 1135-1154 Request permission

## Abstract:

In modeling physical systems, it is sometimes useful to construct border bases of 0-dimensional polynomial ideals which are contained in the ideal generated by a given set of polynomials. We define and construct such subideal border bases, provide some basic properties and generalize a suitable variant of the Buchberger-Möller algorithm as well as the AVI-algorithm of Heldt, Kreuzer, Pokutta, and Poulisse to the subideal setting. The subideal version of the AVI-algorithm is then applied to an actual industrial problem.## References

- John Abbott, Claudia Fassino, and Maria-Laura Torrente,
*Stable border bases for ideals of points*, J. Symbolic Comput.**43**(2008), no. 12, 883–894. MR**2472538**, DOI 10.1016/j.jsc.2008.05.002 - The Algebraic Oil Research Project, see http://www.fim.uni-passau.de/algebraic-oil
- \apcocoa: Applied Computations in Commutative Algebra, see http://www.apcocoa.org
- H. M. Möller and B. Buchberger,
*The construction of multivariate polynomials with preassigned zeros*, Computer algebra (Marseille, 1982) Lecture Notes in Comput. Sci., vol. 144, Springer, Berlin-New York, 1982, pp. 24–31. MR**680050** - Daniel Heldt, Martin Kreuzer, Sebastian Pokutta, and Hennie Poulisse,
*Approximate computation of zero-dimensional polynomial ideals*, J. Symbolic Comput.**44**(2009), no. 11, 1566–1591. MR**2561289**, DOI 10.1016/j.jsc.2008.11.010 - Achim Kehrein and Martin Kreuzer,
*Characterizations of border bases*, J. Pure Appl. Algebra**196**(2005), no. 2-3, 251–270. MR**2116166**, DOI 10.1016/j.jpaa.2004.08.028 - Achim Kehrein, Martin Kreuzer, and Lorenzo Robbiano,
*An algebraist’s view on border bases*, Solving polynomial equations, Algorithms Comput. Math., vol. 14, Springer, Berlin, 2005, pp. 169–202. MR**2161988**, DOI 10.1007/3-540-27357-3_{4} - M. Kreuzer, H. Poulisse, and L. Robbiano, From oil fields to Hilbert schemes, in: J. Abbott, L. Robbiano (eds.),
*Approximate Commutative Algebra*, Springer-Verlag, Vienna, 2009, pp. 1–54. - Martin Kreuzer and Lorenzo Robbiano,
*Computational commutative algebra. 1*, Springer-Verlag, Berlin, 2000. MR**1790326**, DOI 10.1007/978-3-540-70628-1 - Martin Kreuzer and Lorenzo Robbiano,
*Computational commutative algebra. 2*, Springer-Verlag, Berlin, 2005. MR**2159476** - Martin Kreuzer and Lorenzo Robbiano,
*Deformations of border bases*, Collect. Math.**59**(2008), no. 3, 275–297. MR**2452308**, DOI 10.1007/BF03191188 - Kiyoshi Shirayanagi and Moss Sweedler,
*Remarks on automatic algorithm stabilization*, J. Symbolic Comput.**26**(1998), no. 6, 761–765. Symbolic numeric algebra for polynomials. MR**1662034**, DOI 10.1006/jsco.1998.0238 - Hans J. Stetter,
*Numerical polynomial algebra*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2004. MR**2048781**, DOI 10.1137/1.9780898717976

## Additional Information

**Martin Kreuzer**- Affiliation: Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany
- Email: martin.kreuzer@uni-passau.de
**Henk Poulisse**- Affiliation: Harkenkamp 1a, D-30851 Langenhagen, Germany
- Email: henk.poulisse@gmail.com
- Received by editor(s): May 7, 2009
- Received by editor(s) in revised form: March 9, 2010
- Published electronically: November 1, 2010
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**80**(2011), 1135-1154 - MSC (2010): Primary 13P10; Secondary 41A10, 65D05, 14Q99
- DOI: https://doi.org/10.1090/S0025-5718-2010-02432-9
- MathSciNet review: 2772116