On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards $C^s$ functions with $s>1$
HTML articles powered by AMS MathViewer
- by S. Amat, K. Dadourian and J. Liandrat PDF
- Math. Comp. 80 (2011), 959-971 Request permission
Abstract:
This paper presents a new nonlinear dyadic subdivision scheme eliminating the Gibbs oscillations close to discontinuities. Its convergence, stability and order of approximation are analyzed. It is proved that this scheme converges towards limit functions Hölder continuous with exponent larger than $1.299$. Numerical estimates provide a Hölder exponent of $2.438$. This subdivision scheme is the first one that simultaneously achieves the control of the Gibbs phenomenon and has limit functions with Hölder exponent larger than $1$.References
- Amat S., Aràndiga F., Cohen A. and Donat R., (2002). Tensor product multiresolution analysis with error control for compact image representation. Signal Processing, 82 (4), 587-608.
- Amat S., Dadourian K. and Liandrat J., (2010). Analysis of a class of nonlinear subdivision scheme and associated multiresolution transforms, to appear in Adv. Comput. Math.. DOI: 10.1007/s10444-010-9151-6.
- S. Amat, K. Dadourian, and J. Liandrat, On the convergence of various subdivision schemes using a perturbation theorem, Curve and surface fitting: Avignon 2006, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2007, pp. 1–10. MR 2328431
- Sergio Amat, Rosa Donat, Jacques Liandrat, and J. Carlos Trillo, Analysis of a new nonlinear subdivision scheme. Applications in image processing, Found. Comput. Math. 6 (2006), no. 2, 193–225. MR 2228739, DOI 10.1007/s10208-004-0122-5
- Sergio Amat and Jacques Liandrat, On the stability of the PPH nonlinear multiresolution, Appl. Comput. Harmon. Anal. 18 (2005), no. 2, 198–206. MR 2121511, DOI 10.1016/j.acha.2004.12.002
- Francesc Aràndiga and Rosa Donat, Nonlinear multiscale decompositions: the approach of A. Harten, Numer. Algorithms 23 (2000), no. 2-3, 175–216. MR 1772051, DOI 10.1023/A:1019104118012
- Chaikin G., (1974). An algorithm for high speed curve generation. Computer Graphics and Image Processing, 3, 346-349.
- Catmull E.E. and Clark J.H., (1978). Recursively generated B-spline surfaces on topological meshes. Computer Aided Design, 19 (453), 350-355.
- Albert Cohen, Nira Dyn, and Basarab Matei, Quasilinear subdivision schemes with applications to ENO interpolation, Appl. Comput. Harmon. Anal. 15 (2003), no. 2, 89–116. MR 2007053, DOI 10.1016/S1063-5203(03)00061-7
- Ingrid Daubechies, Olof Runborg, and Wim Sweldens, Normal multiresolution approximation of curves, Constr. Approx. 20 (2004), no. 3, 399–463. MR 2057535, DOI 10.1007/s00365-003-0543-4
- Gilles Deslauriers and Serge Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989), no. 1, 49–68. Fractal approximation. MR 982724, DOI 10.1007/BF01889598
- David L. Donoho and Thomas P.-Y. Yu, Nonlinear pyramid transforms based on median-interpolation, SIAM J. Math. Anal. 31 (2000), no. 5, 1030–1061. MR 1759198, DOI 10.1137/S0036141097330294
- N. Dyn, Subdivision schemes in computer-aided geometric design, Advances in numerical analysis, Vol. II (Lancaster, 1990) Oxford Sci. Publ., Oxford Univ. Press, New York, 1992, pp. 36–104. MR 1172120
- Nira Dyn, Michael S. Floater, and Kai Hormann, A $C^2$ four-point subdivision scheme with fourth order accuracy and its extensions, Mathematical methods for curves and surfaces: Tromsø2004, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, pp. 145–156. MR 2151361
- Nira Dyn, David Levin, and John A. Gregory, A $4$-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Design 4 (1987), no. 4, 257–268. MR 937365, DOI 10.1016/0167-8396(87)90001-X
- Serge Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986), no. 1, 185–204. MR 829123, DOI 10.1016/0022-247X(86)90077-6
- Michael S. Floater and Charles A. Micchelli, Nonlinear stationary subdivision, Approximation theory, Monogr. Textbooks Pure Appl. Math., vol. 212, Dekker, New York, 1998, pp. 209–224. MR 1625230
- David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997), no. 4, 644–668. MR 1491051, DOI 10.1137/S0036144596301390
- S. Harizanov and P. Oswald, Stability of nonlinear subdivision and multiscale transforms, Constr. Approx. 31 (2010), no. 3, 359–393. MR 2608417, DOI 10.1007/s00365-010-9082-y
- Ami Harten, Multiresolution representation of data: a general framework, SIAM J. Numer. Anal. 33 (1996), no. 3, 1205–1256. MR 1393910, DOI 10.1137/0733060
- Kuijt F., (1998). Convexity Preserving Interpolation: Nonlinear Subdivision and Splines. PhD thesis, University of Twente.
- Peter Oswald, Smoothness of nonlinear median-interpolation subdivision, Adv. Comput. Math. 20 (2004), no. 4, 401–423. MR 2032286, DOI 10.1023/A:1027315032100
Additional Information
- S. Amat
- Affiliation: Departamento de Matemática Aplicada y Estadística. Universidad Politécnica de Cartagena, Spain
- Email: sergio.amat@upct.es
- K. Dadourian
- Affiliation: Ecole Centrale de Marseille, Laboratoire d’Analyse Topologie et Probabilites, France
- Email: dadouria@cmi.univ-mrs.fr
- J. Liandrat
- Affiliation: Ecole Centrale de Marseille, Laboratoire d’Analyse Topologie et Probabilites, France
- MR Author ID: 328783
- Email: jliandrat@centrale-marseille.fr
- Received by editor(s): February 18, 2009
- Received by editor(s) in revised form: March 20, 2010
- Published electronically: November 5, 2010
- Additional Notes: The research of the first author was supported in part by the Spanish grants MTM2010-17508 and 08662/PI/08
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 959-971
- MSC (2010): Primary 41A05, 41A10, 65D05, 65D17
- DOI: https://doi.org/10.1090/S0025-5718-2010-02434-2
- MathSciNet review: 2772103