AFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property
HTML articles powered by AMS MathViewer
- by Khamron Mekchay, Pedro Morin and Ricardo H. Nochetto;
- Math. Comp. 80 (2011), 625-648
- DOI: https://doi.org/10.1090/S0025-5718-2010-02435-4
- Published electronically: November 16, 2010
- PDF | Request permission
Abstract:
We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on $C^1$ graphs $\Gamma$ in $\mathbb {R}^d ~(d\ge 2)$. We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in $H^1(\Gamma )$ and the surface error in $W^1_\infty (\Gamma )$ due to approximation of $\Gamma$. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of $\Gamma$ in $W^1_\infty$. We conclude with one numerical experiment that illustrates the theory.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- Eberhard Bänsch, Pedro Morin, and Ricardo H. Nochetto, Surface diffusion of graphs: variational formulation, error analysis, and simulation, SIAM J. Numer. Anal. 42 (2004), no. 2, 773–799. MR 2084235, DOI 10.1137/S0036142902419272
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- J. M. Cascón, K. Mekchay, P. Morin and R. H. Nochetto, Quasi-optimal convergence rate for AFEM for the Laplace-Beltrami operator on parametric surfaces, (in preparation).
- Zhiming Chen and Jia Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comp. 73 (2004), no. 247, 1167–1193. MR 2047083, DOI 10.1090/S0025-5718-04-01634-5
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Alan Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 2, 805–827. MR 2485433, DOI 10.1137/070708135
- Alan Demlow and Gerhard Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), no. 1, 421–442. MR 2285862, DOI 10.1137/050642873
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- W. Dörfler and M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation, Math. Comp. 67 (1998), no. 224, 1361–1382. MR 1489969, DOI 10.1090/S0025-5718-98-00993-4
- Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988, pp. 142–155. MR 976234, DOI 10.1007/BFb0082865
- K. Mekchay, Convergence of adaptive finite element methods, Ph.D. Dissertation, University of Maryland, December 2005.
- Khamron Mekchay and Ricardo H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43 (2005), no. 5, 1803–1827. MR 2192319, DOI 10.1137/04060929X
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, DOI 10.1137/S0036144502409093
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp. 72 (2003), no. 243, 1067–1097. MR 1972728, DOI 10.1090/S0025-5718-02-01463-1
- F. A. Ortega, GMV: General Mesh Viewer users Manual, Version 1.8. Los Alamos National Laboratory, LAUR 95-2986, 1995.
- Alfred Schmidt and Kunibert G. Siebert, Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005. The finite element toolbox ALBERTA; With 1 CD-ROM (Unix/Linux). MR 2127659
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Technique, Wiley-Teubner, Chichester, 1996.
Bibliographic Information
- Khamron Mekchay
- Affiliation: Department of Mathematics, Faculty of Science, Chulalongkorn University, Phyathai, Bangkok 10330, Thailand – and – University of Maryland, College Park, Maryland 20742
- Email: k.mekchay@gmail.com
- Pedro Morin
- Affiliation: Instituto de Matemática Aplicada del Litoral, Universidad Nacional del Litoral, CONICET, Güemes 3450, S3000GLN Santa Fe, Argentina
- Email: pmorin@santafe-conicet.gov.ar
- Ricardo H. Nochetto
- Affiliation: Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
- MR Author ID: 131850
- Email: rhn@math.umd.edu
- Received by editor(s): July 20, 2009
- Received by editor(s) in revised form: February 26, 2010
- Published electronically: November 16, 2010
- Additional Notes: The first author was partially supported by NSF Grants DMS-0204670, DMS-0505454, and INT-0126272.
The second author was partially supported by CONICET through Grants PIP 5478, PIP 112-200801-02182, by Universidad Nacional del Litoral through Grants CAI+D 008-054 and CAI+D PI 062-312, and by NSF Grant DMS-0204670.
The third author was partially supported by NSF Grants DMS-0204670, DMS-0505454, DMS-0807811, and INT-0126272, and the General Research Board of the University of Maryland - © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 625-648
- MSC (2010): Primary 65N30, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-2010-02435-4
- MathSciNet review: 2772090