Quasi-optimal and robust a posteriori error estimates in $L^\infty (L^2)$ for the approximation of Allen-Cahn equations past singularities
HTML articles powered by AMS MathViewer
- by Sören Bartels and Rüdiger Müller;
- Math. Comp. 80 (2011), 761-780
- DOI: https://doi.org/10.1090/S0025-5718-2010-02444-5
- Published electronically: November 18, 2010
- PDF | Request permission
Abstract:
Quasi-optimal a posteriori error estimates in $L^\infty (0,T;L^2(\Omega ))$ are derived for the finite element approximation of Allen-Cahn equations. The estimates depend on the inverse of a small parameter only in a low order polynomial and are valid past topological changes of the evolving interface. The error analysis employs an elliptic reconstruction of the approximate solution and applies to a large class of conforming, nonconforming, mixed, and discontinuous Galerkin methods. Numerical experiments illustrate the theoretical results.References
- Sam Allen and John Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 27:1084–1095, 1979.
- Nicholas D. Alikakos and Giorgio Fusco, The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions, Indiana Univ. Math. J. 42 (1993), no. 2, 637–674. MR 1237062, DOI 10.1512/iumj.1993.42.42028
- Mark Ainsworth, A synthesis of a posteriori error estimation techniques for conforming, non-conforming and discontinuous Galerkin finite element methods, Recent advances in adaptive computation, Contemp. Math., vol. 383, Amer. Math. Soc., Providence, RI, 2005, pp. 1–14. MR 2195792, DOI 10.1090/conm/383/07154
- Sören Bartels, A posteriori error analysis for time-dependent Ginzburg-Landau type equations, Numer. Math. 99 (2005), no. 4, 557–583. MR 2121069, DOI 10.1007/s00211-004-0560-7
- Sören Bartels and Rüdiger Müller. Error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Preprint available at www.bartels.ins.uni-bonn.de, 2008.
- Sören Bartels, Rüdiger Müller, and Christoph Ortner. Robust a posteriori error estimates for the approximation of Cahn-Hilliard equations past topological changes. In preparation, 2009.
- Sören Bartels, Rüdiger Müller, and Christoph Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. Preprint available at www.bartels.ins.uni-bonn.de, 2009.
- Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, NJ, 1978. MR 485012
- Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. MR 1408371, DOI 10.1090/S0025-5718-97-00837-5
- Carsten Carstensen, Sören Bartels, and Stefan Jansche, A posteriori error estimates for nonconforming finite element methods, Numer. Math. 92 (2002), no. 2, 233–256. MR 1922920, DOI 10.1007/s002110100378
- Xinfu Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces, Comm. Partial Differential Equations 19 (1994), no. 7-8, 1371–1395. MR 1284813, DOI 10.1080/03605309408821057
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- E. Dari, R. G. Durán, and C. Padra, Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal. 37 (2000), no. 2, 683–700. MR 1740762, DOI 10.1137/S0036142998340253
- Piero de Mottoni and Michelle Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1533–1589 (English, with English and French summaries). MR 1672406, DOI 10.1090/S0002-9947-1995-1672406-7
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM J. Numer. Anal. 32 (1995), no. 3, 706–740. MR 1335652, DOI 10.1137/0732033
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), no. 6, 1729–1749. MR 1360457, DOI 10.1137/0732078
- Xiaobing Feng and Andreas Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math. 94 (2003), no. 1, 33–65. MR 1971212, DOI 10.1007/s00211-002-0413-1
- Xiaobing Feng and Hai-jun Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow, J. Sci. Comput. 24 (2005), no. 2, 121–146. MR 2221163, DOI 10.1007/s10915-004-4610-1
- Emmanuil H. Georgoulis and Omar Lakkis. A posteriori error control for discontinuous Galerkin methods for parabolic problems, 2008.
- Tom Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), no. 2, 417–461. MR 1237490
- A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, Studies in Mathematics and its Applications, vol. 6, North-Holland Publishing Co., Amsterdam-New York, 1979. Translated from the Russian by Karol Makowski. MR 528295
- Daniel Kessler, Ricardo H. Nochetto, and Alfred Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality, M2AN Math. Model. Numer. Anal. 38 (2004), no. 1, 129–142. MR 2073933, DOI 10.1051/m2an:2004006
- Omar Lakkis and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627–1658. MR 2240628, DOI 10.1090/S0025-5718-06-01858-8
- Mats G. Larson and Axel Målqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math. 108 (2008), no. 3, 487–500. MR 2365826, DOI 10.1007/s00211-007-0121-y
- Charalambos Makridakis and Ricardo H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585–1594. MR 2034895, DOI 10.1137/S0036142902406314
- Ricardo H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 64 (1995), no. 209, 1–22. MR 1270622, DOI 10.1090/S0025-5718-1995-1270622-3
- Ricardo H. Nochetto, Alfred Schmidt, Kunibert G. Siebert, and Andreas Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations, Numer. Math. 104 (2006), no. 4, 515–538. MR 2249676, DOI 10.1007/s00211-006-0027-0
- B. Rivière and M. F. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Log number: R74, Comput. Math. Appl. 46 (2003), no. 1, 141–163. $p$-FEM2000: $p$ and $hp$ finite element methods—mathematics and engineering practice (St. Louis, MO). MR 2015276, DOI 10.1016/S0898-1221(03)90086-1
- Rüdiger Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley & Teubner, 1996.
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI 10.1137/0710062
Bibliographic Information
- Sören Bartels
- Affiliation: Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 6, 53115 Bonn, Germany
- Email: bartels@ins.uni-bonn.de
- Rüdiger Müller
- Affiliation: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
- Email: mueller@wias-berlin.de
- Received by editor(s): May 13, 2009
- Received by editor(s) in revised form: February 1, 2010
- Published electronically: November 18, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 761-780
- MSC (2010): Primary 65M15, 65M50; Secondary 35K20
- DOI: https://doi.org/10.1090/S0025-5718-2010-02444-5
- MathSciNet review: 2772095