Positive trigonometric quadrature formulas and quadrature on the unit circle
HTML articles powered by AMS MathViewer
- by \fbox{Franz } Peherstorfer;
- Math. Comp. 80 (2011), 1685-1701
- DOI: https://doi.org/10.1090/S0025-5718-2011-02414-2
- Published electronically: March 3, 2011
- PDF | Request permission
Abstract:
We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to $n-1-m$, $0\leq m\leq n-1$. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a byproduct interlacing properties of zeros of para-orthogonal polynomials are obtained. Finally, asymptotics for the quadrature weights are presented.References
- N. I. Aheizer and M. Krein, Some questions in the theory of moments, Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, RI, 1962. Translated by W. Fleming and D. Prill. MR 167806
- A. F. Beardon and K. A. Driver, The zeros of linear combinations of orthogonal polynomials, J. Approx. Theory 137 (2005), no. 2, 179–186. MR 2186945, DOI 10.1016/j.jat.2005.09.001
- Ruymán Cruz-Barroso, Pablo González-Vera, and Olav Njåstad, On bi-orthogonal systems of trigonometric functions and quadrature formulas for periodic integrands, Numer. Algorithms 44 (2007), no. 4, 309–333. MR 2335805, DOI 10.1007/s11075-007-9106-2
- C. F. Bracciali, Xin Li, and A. Sri Ranga, Real orthogonal polynomials in frequency analysis, Math. Comp. 74 (2005), no. 249, 341–362. MR 2085896, DOI 10.1090/S0025-5718-04-01672-2
- M. J. Cantero, L. Moral, and L. Velázquez, Measures and para-orthogonal polynomials on the unit circle, East J. Approx. 8 (2002), no. 4, 447–464. MR 1952510
- Leyla Daruis, Pablo González-Vera, and Olav Njåstad, Szegö quadrature formulas for certain Jacobi-type weight functions, Math. Comp. 71 (2002), no. 238, 683–701. MR 1885621, DOI 10.1090/S0025-5718-01-01337-0
- G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford (1971).
- Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation 1954 (1954), no. 104, 79. MR 61706
- L. Ya. Geronimus, Orthogonal polynomials: Estimates, asymptotic formulas, and series of polynomials orthogonal on the unit circle and on an interval, Consultants Bureau, New York, 1961. Authorized translation from the Russian. MR 133643
- L. Golinskii, Quadrature formula and zeros of para-orthogonal polynomials on the unit circle, Acta Math. Hungar. 96 (2002), no. 3, 169–186. MR 1919160, DOI 10.1023/A:1019765002077
- William B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle, J. Comput. Appl. Math. 46 (1993), no. 1-2, 183–198. Computational complex analysis. MR 1222480, DOI 10.1016/0377-0427(93)90294-L
- Dunham Jackson, Series of orthogonal polynomials, Ann. of Math. (2) 34 (1933), no. 3, 527–545. MR 1503122, DOI 10.2307/1968176
- William B. Jones, Olav Njåstad, and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), no. 2, 113–152. MR 976057, DOI 10.1112/blms/21.2.113
- Sun-Mi Kim and Lothar Reichel, Anti-Szegő quadrature rules, Math. Comp. 76 (2007), no. 258, 795–810. MR 2291837, DOI 10.1090/S0025-5718-06-01904-1
- Gradimir V. Milovanović, Aleksandar S. Cvetković, and Marija P. Stanić, Trigonometric orthogonal systems and quadrature formulae, Comput. Math. Appl. 56 (2008), no. 11, 2915–2931. MR 2467680, DOI 10.1016/j.camwa.2008.07.024
- Franz Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), no. 6, 935–942. MR 635246, DOI 10.1137/0512079
- Franz Peherstorfer, Characterization of quadrature formula. II, SIAM J. Math. Anal. 15 (1984), no. 5, 1021–1030. MR 755862, DOI 10.1137/0515079
- Franz Peherstorfer, Linear combinations of orthogonal polynomials generating positive quadrature formulas, Math. Comp. 55 (1990), no. 191, 231–241. MR 1023052, DOI 10.1090/S0025-5718-1990-1023052-9
- Franz Peherstorfer, On positive quadrature formulas, Numerical integration, IV (Oberwolfach, 1992) Internat. Ser. Numer. Math., vol. 112, Birkhäuser, Basel, 1993, pp. 297–313. MR 1248412
- Franz Peherstorfer, Positive quadrature formulas. III. Asymptotics of weights, Math. Comp. 77 (2008), no. 264, 2241–2259. MR 2429883, DOI 10.1090/S0025-5718-08-02119-4
- F. Peherstorfer, Szegő-Kronrod quadrature on the unit circle, manuscript.
- Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
- Barry Simon, Orthogonal polynomials on the unit circle. Part 2, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR 2105089, DOI 10.1090/coll/054.2/01
- Barry Simon, Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle, J. Math. Anal. Appl. 329 (2007), no. 1, 376–382. MR 2306808, DOI 10.1016/j.jmaa.2006.06.076
- G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Providence, 1975.
- Gábor Szegö, On bi-orthogonal systems of trigonometric polynomials, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1964), 255–273 (1964) (English, with Russian summary). MR 166541
- Manwah Lilian Wong, First and second kind paraorthogonal polynomials and their zeros, J. Approx. Theory 146 (2007), no. 2, 282–293. MR 2328186, DOI 10.1016/j.jat.2006.12.007
Bibliographic Information
- \fbox{Franz } Peherstorfer
- Affiliation: Group for Dynamical Systems and Approximation Theory, Institute for Analysis, Johannes Kepler University, A-4040 Linz, Austria
- Received by editor(s): November 6, 2008
- Received by editor(s) in revised form: January 29, 2010
- Published electronically: March 3, 2011
- Additional Notes: The author was supported by the Austrian Science Fund FWF, project no. P20413-N18
Sadly, on November 27, 2009 the author, Franz Peherstorfer, passed away. Since then, Ionela Moale, his last PhD student, did the main work in preparing the paper for publication, and Franz’s colleague, Professor Peter Yuditskii, has kindly stepped in to proofread the galley proof of the work. - © Copyright 2011 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 1685-1701
- MSC (2010): Primary 65D30, 41A55, 42C05
- DOI: https://doi.org/10.1090/S0025-5718-2011-02414-2
- MathSciNet review: 2785474