Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points
HTML articles powered by AMS MathViewer
- by L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva and M. Vianello;
- Math. Comp. 80 (2011), 1623-1638
- DOI: https://doi.org/10.1090/S0025-5718-2011-02442-7
- Published electronically: January 19, 2011
- PDF | Request permission
Abstract:
Using the concept of Geometric Weakly Admissible Meshes (see §2 below) together with an algorithm based on the classical QR factorization of matrices, we compute efficient points for discrete multivariate least squares approximation and Lagrange interpolation.References
- R. Berman and S. Boucksom, D. Witt Nyström, Fekete points and convergence towards equilibrium measures on complex manifolds, arXiv:0907.2820 (Acta Math., to appear).
- T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in $\textbf {C}$ and $\textbf {C}^n$, Rocky Mountain J. Math. 22 (1992), no. 2, 441–470. MR 1180711, DOI 10.1216/rmjm/1181072740
- T. Bloom, L. Bos, N. Levenberg, and S. Waldron, On the convergence of optimal measures, Constr. Approx. 32 (2010), no. 1, 159–179. MR 2659752, DOI 10.1007/s00365-009-9078-7
- Len Bos, Marco Caliari, Stefano De Marchi, Marco Vianello, and Yuan Xu, Bivariate Lagrange interpolation at the Padua points: the generating curve approach, J. Approx. Theory 143 (2006), no. 1, 15–25. MR 2271722, DOI 10.1016/j.jat.2006.03.008
- L. P. Bos and N. Levenberg, On the calculation of approximate Fekete points: the univariate case, Electron. Trans. Numer. Anal. 30 (2008), 377–397. MR 2487768
- Peter Businger and Gene H. Golub, Handbook series linear algebra. Linear least squares solutions by Householder transformations, Numer. Math. 7 (1965), 269–276. MR 176590, DOI 10.1007/BF01436084
- M. Caliari, S. De Marchi and M. Vianello, Algorithm 886: Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains, ACM Trans. Math. Software 35-3 (2008).
- Jean-Paul Calvi and Norman Levenberg, Uniform approximation by discrete least squares polynomials, J. Approx. Theory 152 (2008), no. 1, 82–100. MR 2419299, DOI 10.1016/j.jat.2007.05.005
- Ali Çivril and Malik Magdon-Ismail, On selecting a maximum volume sub-matrix of a matrix and related problems, Theoret. Comput. Sci. 410 (2009), no. 47-49, 4801–4811. MR 2583677, DOI 10.1016/j.tcs.2009.06.018
- Moshe Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), no. 4, 345–390. MR 1154903, DOI 10.1007/BF01060030
- Michael G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal. 19 (1982), no. 6, 1260–1262. MR 679664, DOI 10.1137/0719090
- Jan S. Hesthaven and Tim Warburton, Nodal discontinuous Galerkin methods, Texts in Applied Mathematics, vol. 54, Springer, New York, 2008. Algorithms, analysis, and applications. MR 2372235, DOI 10.1007/978-0-387-72067-8
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- B. F. Logan and L. A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J. 42 (1975), no. 4, 645–659. MR 397240
- Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, and George S. H. Pau, A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal. 8 (2009), no. 1, 383–404. MR 2449115, DOI 10.3934/cpaa.2009.8.383
- The Mathworks, MATLAB documentation set, 2008 version, (http://www.mathworks.com).
- A. Narkhede and D. Manocha, Graphics Gems 5, Academic Press, 1995, pp. 394–397.
- Richard Pasquetti and Francesca Rapetti, Spectral element methods on unstructured meshes: comparisons and recent advances, J. Sci. Comput. 27 (2006), no. 1-3, 377–387. MR 2285788, DOI 10.1007/s10915-005-9048-6
- A. Sommariva and M. Vianello, Product Gauss cubature over polygons based on Green’s integration formula, BIT 47 (2007), no. 2, 441–453. MR 2334049, DOI 10.1007/s10543-007-0131-2
- Alvise Sommariva and Marco Vianello, Computing approximate Fekete points by QR factorizations of Vandermonde matrices, Comput. Math. Appl. 57 (2009), no. 8, 1324–1336. MR 2512231, DOI 10.1016/j.camwa.2008.11.011
- N. Sukumar and E. A. Malsch, Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Engrg. 13 (2006), no. 1, 129–163. MR 2283620, DOI 10.1007/BF02905933
- M. A. Taylor, B. A. Wingate, and R. E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal. 38 (2000), no. 5, 1707–1720. MR 1813252, DOI 10.1137/S0036142998337247
- Mark A. Taylor, Beth A. Wingate, and Len P. Bos, A cardinal function algorithm for computing multivariate quadrature points, SIAM J. Numer. Anal. 45 (2007), no. 1, 193–205. MR 2285850, DOI 10.1137/050625801
- T. Warburton, An explicit construction of interpolation nodes on the simplex, J. Engrg. Math. 56 (2006), no. 3, 247–262. MR 2292675, DOI 10.1007/s10665-006-9086-6
- V.P. Zaharjuta, Transfinite diameter, Chebyshev constants and capacity for compacts in $\mathbb {C}^{n}$, Math. USSR Sbornik 25 (1975), 350–364.
- P. Žitňan,, A stable collocation solution of the Poisson problems on planar domains, 2nd Dolomites Workshop on Constructive Approximation and Applications (DWCAA09), Alba di Canazei (Trento, Italy), Sept. 4-9 2009 (abstract online at: http://drna.di.univr.it).
Bibliographic Information
- L. Bos
- Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- J.-P. Calvi
- Affiliation: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 32062, Toulouse Cedex 9, France
- N. Levenberg
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana, 47405
- MR Author ID: 113190
- A. Sommariva
- Affiliation: Department of Pure and Applied Mathematics, University of Padova, 35121 Padova, Italy
- M. Vianello
- Affiliation: Department of Pure and Applied Mathematics, University of Padova, 35121 Padova, Italy
- Received by editor(s): February 10, 2009
- Received by editor(s) in revised form: April 18, 2010
- Published electronically: January 19, 2011
- Additional Notes: The first author was supported in part by NSERC.
The last three authors were supported by the “ex-$60%$” funds and by the project “Interpolation and Extrapolation: new algorithms and applications” (2009/10) of the University of Padova, and by the INdAM GNCS - © Copyright 2011 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 1623-1638
- MSC (2010): Primary 41A10, 41A63, 65D05, 65D15, 65Y20
- DOI: https://doi.org/10.1090/S0025-5718-2011-02442-7
- MathSciNet review: 2785471