Acceleration of a two-grid method for eigenvalue problems
HTML articles powered by AMS MathViewer
- by Xiaozhe Hu and Xiaoliang Cheng;
- Math. Comp. 80 (2011), 1287-1301
- DOI: https://doi.org/10.1090/S0025-5718-2011-02458-0
- Published electronically: February 18, 2011
- PDF | Request permission
Abstract:
This paper provides a new two-grid discretization method for solving partial differential equation or integral equation eigenvalue problems. In 2001, Xu and Zhou introduced a scheme that reduces the solution of an eigenvalue problem on a finite element grid to that of one single linear problem on the same grid together with a similar eigenvalue problem on a much coarser grid. By solving a slightly different linear problem on the fine grid, the new algorithm in this paper significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Numerical examples are also provided to demonstrate the efficiency of the new method.References
- O. Axelsson and W. Layton, A two-level discretization of nonlinear boundary value problems, SIAM J. Numer. Anal. 33 (1996), no. 6, 2359–2374. MR 1427468, DOI 10.1137/S0036142993247104
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 89
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86
- L Chen and C.-S. Zhang, AFEM@matlab: a Matlab package of adaptive finite element methods, Tech. report, University of Maryland at College Park, 2006.
- V. Šmulian, On the principle of inclusion in the space of the type $(\textrm {B})$, Rec. Math. [Mat. Sbornik] N.S. 5(47) (1939), 317–328 (Russian, with English summary). MR 2006
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- Robert Fortet, Remarques sur les espaces uniformément convexes, C. R. Acad. Sci. Paris 210 (1940), 497–499. MR 2007
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- Beresford N. Parlett, The symmetric eigenvalue problem, Classics in Applied Mathematics, vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original. MR 1490034, DOI 10.1137/1.9781611971163
- G. Peters and J. H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s method, SIAM Rev. 21 (1979), no. 3, 339–360. MR 535118, DOI 10.1137/1021052
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- M. Gontcharoff, Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17–48 (Russian, with French summary). MR 2002
- S. Losinsky, Sur le procédé d’interpolation de Fejér, C. R. (Doklady) Acad. Sci. URSS (N.S.) 24 (1939), 318–321 (French). MR 2001
- Katharine E. O’Brien, Some problems in interpolation by characteristic functions of linear differential systems of the fourth order, Bull. Amer. Math. Soc. 46 (1940), 281–290. MR 2004, DOI 10.1090/S0002-9904-1940-07197-6
Bibliographic Information
- Xiaozhe Hu
- Affiliation: Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou, 310027, People’s Republic of China
- MR Author ID: 793307
- Email: huxiaozhezju@gmail.com
- Xiaoliang Cheng
- Affiliation: Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou, 310027, People’s Republic of China
- Email: xiaoliangcheng@zju.edu.cn
- Received by editor(s): October 21, 2009
- Received by editor(s) in revised form: June 15, 2010
- Published electronically: February 18, 2011
- Additional Notes: This work was supported in part by National Science Foundation of China (No. 10871179).
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 1287-1301
- MSC (2010): Primary 65L15, 65N15, 65N25, 65N30, 65N55
- DOI: https://doi.org/10.1090/S0025-5718-2011-02458-0
- MathSciNet review: 2785459