Zero-sum free sets with small sum-set
HTML articles powered by AMS MathViewer
- by Gautami Bhowmik, Immanuel Halupczok and Jan-Christoph Schlage-Puchta PDF
- Math. Comp. 80 (2011), 2253-2258 Request permission
Abstract:
Let $A$ be a zero-sum free subset of $\mathbb {Z}_n$ with $|A|=k$. We compute for $k\leq 7$ the least possible size of the set of all subset-sums of $A$.References
- Gautami Bhowmik, Immanuel Halupczok, and Jan-Christoph Schlage-Puchta, The structure of maximal zero-sum free sequences, Acta Arith. 143 (2010), no. 1, 21–50. MR 2640057, DOI 10.4064/aa143-1-2
- R. B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21 (1972), 111–116. MR 304508, DOI 10.4064/aa-21-1-111-116
- Weidong Gao and Alfred Geroldinger, On the structure of zerofree sequences, Combinatorica 18 (1998), no. 4, 519–527. MR 1722257, DOI 10.1007/s004930050037
- John E. Olson, An addition theorem modulo $p$, J. Combinatorial Theory 5 (1968), 45–52. MR 227129, DOI 10.1016/S0021-9800(68)80027-4
- John E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975/76), no. 2, 147–156. MR 382215, DOI 10.4064/aa-28-2-147-156
Additional Information
- Gautami Bhowmik
- Affiliation: Université de Lille 1, Laboratoire Paul Painlevé, UMR CNRS 8524, 59655 Villeneuve d’Ascq Cedex, France
- Email: bhowmik@math.univ-lille1.fr
- Immanuel Halupczok
- Affiliation: Institut für Mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstraße 62, 48149 Münster, Germany
- Email: math@karimmi.de
- Jan-Christoph Schlage-Puchta
- Affiliation: Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany
- Email: jcp@math.uni-freiburg.de
- Received by editor(s): June 4, 2009
- Received by editor(s) in revised form: October 29, 2009
- Published electronically: April 26, 2011
- Additional Notes: The second author was supported by the Fondation sciences mathématiques de Paris
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2253-2258
- MSC (2010): Primary 11B75; Secondary 11B50
- DOI: https://doi.org/10.1090/S0025-5718-2011-02385-9
- MathSciNet review: 2813358