Irregular primes to 163 million
HTML articles powered by AMS MathViewer
- by J. P. Buhler and D. Harvey PDF
- Math. Comp. 80 (2011), 2435-2444
Abstract:
We compute all irregular primes less than 163 577 856. For all of these primes we verify that the Kummer–Vandiver conjecture holds and that the $\lambda$-invariant is equal to the index of irregularity.References
- Joe Buhler, Richard Crandall, Reijo Ernvall, Tauno Metsänkylä, and M. Amin Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), no. 1-2, 89–96. Computational algebra and number theory (Milwaukee, WI, 1996). MR 1806208, DOI 10.1006/jsco.1999.1011
- J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), no. 203, 151–153. MR 1197511, DOI 10.1090/S0025-5718-1993-1197511-5
- J. P. Buhler, R. E. Crandall, and R. W. Sompolski, Irregular primes to one million, Math. Comp. 59 (1992), no. 200, 717–722. MR 1134717, DOI 10.1090/S0025-5718-1992-1134717-4
- A. Bostan, G. Lecerf, and É. Schost, Tellegen’s principle into practice, Symbolic and Algebraic Computation (J. R. Sendra, ed.), ACM Press, 2003, Proceedings of ISSAC’03, Philadelphia, August 2003., pp. 37–44.
- L. Bluestein, A linear filtering approach to the computation of discrete Fourier transform, Audio and Electroacoustics, IEEE Transactions on 18 (1970), no. 4, 451–455.
- Leo Corry, Fermat meets SWAC: Vandiver, the Lehmers, computers, and number theory, IEEE Ann. Hist. Comput. 30 (2008), no. 1, 38–49. MR 2412202, DOI 10.1109/MAHC.2008.6
- 2009, http://www.mscs.dal.ca/˜dilcher/bernoulli.html/.
- Karl Dilcher, Ladislav Skula, and Ilja Sh. Slavutskiǐ, Bernoulli numbers, Queen’s Papers in Pure and Applied Mathematics, vol. 87, Queen’s University, Kingston, ON, 1991. Bibliography (1713–1990). MR 1119305
- R. Ernvall and T. Metsänkylä, Cyclotomic invariants for primes between $125\,000$ and $150\,000$, Math. Comp. 56 (1991), no. 194, 851–858. MR 1068819, DOI 10.1090/S0025-5718-1991-1068819-7
- R. Ernvall and T. Metsänkylä, Cyclotomic invariants for primes to one million, Math. Comp. 59 (1992), no. 199, 249–250. MR 1134727, DOI 10.1090/S0025-5718-1992-1134727-7
- T. Granlund, The GNU Multiple Precision Arithmetic library, 2008, http://gmplib.org/.
- D. Harvey, A multimodular algorithm for computing Bernoulli numbers, Math. Comp. 79 (2010), 2361–2370.
- —, The zn_poly library, 2008, http://www.cims.nyu.edu/˜harvey/zn_poly/.
- David Harvey, A cache-friendly truncated FFT, Theoret. Comput. Sci. 410 (2009), no. 27-29, 2649–2658. MR 2531107, DOI 10.1016/j.tcs.2009.03.014
- David Harvey, Faster polynomial multiplication via multipoint Kronecker substitution, J. Symbolic Comput. 44 (2009), no. 10, 1502–1510. MR 2543433, DOI 10.1016/j.jsc.2009.05.004
- —, http://www.cims.nyu.edu/˜harvey/irregular/, 2009.
- Guillaume Hanrot, Michel Quercia, and Paul Zimmermann, The middle product algorithm. I, Appl. Algebra Engrg. Comm. Comput. 14 (2004), no. 6, 415–438. MR 2042800, DOI 10.1007/s00200-003-0144-2
- Wells Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113–120. MR 376606, DOI 10.1090/S0025-5718-1975-0376606-9
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- Henri J. Nussbaumer, Fast polynomial transform algorithms for digital convolution, IEEE Trans. Acoust. Speech Signal Process. 28 (1980), no. 2, 205–215. MR 563380, DOI 10.1109/TASSP.1980.1163372
- A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informat. 7 (1976/77), no. 4, 395–398. MR 0436663, DOI 10.1007/bf00289470
- V. Shoup, NTL: A library for doing number theory, http://www.shoup.net/ntl/, 2009.
- I. Sh. Slavut⋅skiĭ, A remark on the paper of T. Uehara: “On $p$-adic continuous functions determined by the Euler numbers” [Rep. Fac. Sci. Engrg. Saga Univ. Math. No. 8 (1980), 1–8; MR0567622 (81e:12020)], Rep. Fac. Sci. Engrg. Saga Univ. Math. 15 (1987), no. 1, 1–2. MR 879252
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- Jonathan W. Tanner and Samuel S. Wagstaff Jr., New congruences for the Bernoulli numbers, Math. Comp. 48 (1987), no. 177, 341–350. MR 866120, DOI 10.1090/S0025-5718-1987-0866120-4
- H. S. Vandiver, Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat’s quotient and Bernoulli’s numbers, Ann. of Math. (2) 18 (1917), no. 3, 105–114. MR 1503591, DOI 10.2307/2007115
- Joris van der Hoeven, The truncated Fourier transform and applications, ISSAC 2004, ACM, New York, 2004, pp. 290–296. MR 2126956, DOI 10.1145/1005285.1005327
- —, Notes on the truncated Fourier transform, unpublished, available from http://www.math.u-psud.fr/˜vdhoeven/, 2005.
- Samuel S. Wagstaff Jr., The irregular primes to $125000$, Math. Comp. 32 (1978), no. 142, 583–591. MR 491465, DOI 10.1090/S0025-5718-1978-0491465-4
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Additional Information
- J. P. Buhler
- Affiliation: Center for Communications Research, 4230 Westerra Ct., San Diego, California 92121
- MR Author ID: 43035
- Email: buhler@ccrwest.org
- D. Harvey
- Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York 10012
- MR Author ID: 734771
- ORCID: 0000-0002-4933-658X
- Email: dmharvey@cims.nyu.edu
- Received by editor(s): March 3, 2010
- Received by editor(s) in revised form: June 18, 2010
- Published electronically: January 20, 2011
- © Copyright 2011 by the authors
- Journal: Math. Comp. 80 (2011), 2435-2444
- MSC (2010): Primary 11Y40; Secondary 11R18
- DOI: https://doi.org/10.1090/S0025-5718-2011-02461-0
- MathSciNet review: 2813369