On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms
HTML articles powered by AMS MathViewer
- by R. Donat, I. Higueras and A. Martínez-Gavara PDF
- Math. Comp. 80 (2011), 2097-2126 Request permission
Abstract:
The application of a Method of Lines to a hyperbolic PDE with source terms gives rise to a system of ODEs containing terms that may have very different stiffness properties. In this case, Implicit-Explicit Runge-Kutta (IMEX-RK) schemes are particularly useful as high order time integrators because they allow an explicit handling of the convective terms, which can be discretized using the highly developed shock capturing technology, together with an implicit treatment of the source terms, necessary for stability reasons.
Motivated by the structure of the source term in a model problem introduced by LeVeque and Yee in [J. Comput. Phys. 86 (1990)], in this paper we study the preservation of certain invariant regions as a weak stability constraint. For the class of source terms considered in this paper, the unit interval is an invariant region for the model balance law. In the first part of the paper, we consider first order time discretizations, which are the basic building blocks of higher order IMEX-RK schemes, and study the conditions that guarantee that $[0,1]$ is also an invariant region for the numerical scheme. In the second part of the paper, we study the conditions that ensure the preservation of this property for higher order IMEX schemes.
References
- Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (1997), no. 2-3, 151–167. Special issue on time integration (Amsterdam, 1996). MR 1485812, DOI 10.1016/S0168-9274(97)00056-1
- François Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. MR 2128209, DOI 10.1007/b93802
- Abdallah Chalabi, On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms, Math. Comp. 66 (1997), no. 218, 527–545. MR 1397441, DOI 10.1090/S0025-5718-97-00817-X
- Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257–276 (French, with English summary). MR 592157, DOI 10.1007/BF01396412
- K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equations, CWI Monographs, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. MR 774402
- L. Ferracina and M. N. Spijker, Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods, SIAM J. Numer. Anal. 42 (2004), no. 3, 1073–1093. MR 2113676, DOI 10.1137/S0036142902415584
- Sigal Gottlieb, David I. Ketcheson, and Chi-Wang Shu, High order strong stability preserving time discretizations, J. Sci. Comput. 38 (2009), no. 3, 251–289. MR 2475652, DOI 10.1007/s10915-008-9239-z
- Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001), no. 1, 89–112. MR 1854647, DOI 10.1137/S003614450036757X
- D. F. Griffiths, A. M. Stuart, and H. C. Yee, Numerical wave propagation in an advection equation with a nonlinear source term, SIAM J. Numer. Anal. 29 (1992), no. 5, 1244–1260. MR 1182730, DOI 10.1137/0729074
- Inmaculada Higueras, On strong stability preserving time discretization methods, J. Sci. Comput. 21 (2004), no. 2, 193–223. MR 2069949, DOI 10.1023/B:JOMP.0000030075.59237.61
- Inmaculada Higueras, Representations of Runge-Kutta methods and strong stability preserving methods, SIAM J. Numer. Anal. 43 (2005), no. 3, 924–948. MR 2177549, DOI 10.1137/S0036142903427068
- Inmaculada Higueras, Strong stability for additive Runge-Kutta methods, SIAM J. Numer. Anal. 44 (2006), no. 4, 1735–1758. MR 2257125, DOI 10.1137/040612968
- M. W. Hirsch and Hal Smith, Monotone dynamical systems, Handbook of differential equations: ordinary differential equations. Vol. II, Elsevier B. V., Amsterdam, 2005, pp. 239–357. MR 2182759
- Zoltán Horváth, Positivity of Runge-Kutta and diagonally split Runge-Kutta methods, Appl. Numer. Math. 28 (1998), no. 2-4, 309–326. Eighth Conference on the Numerical Treatment of Differential Equations (Alexisbad, 1997). MR 1655167, DOI 10.1016/S0168-9274(98)00050-6
- Zoltán Horváth, On the positivity step size threshold of Runge-Kutta methods, Appl. Numer. Math. 53 (2005), no. 2-4, 341–356. MR 2128530, DOI 10.1016/j.apnum.2004.08.026
- Willem Hundsdorfer and Jan Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, Springer Series in Computational Mathematics, vol. 33, Springer-Verlag, Berlin, 2003. MR 2002152, DOI 10.1007/978-3-662-09017-6
- George Em. Karniadakis, Moshe Israeli, and Steven A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 97 (1991), no. 2, 414–443. MR 1137607, DOI 10.1016/0021-9991(91)90007-8
- David I. Ketcheson, Colin B. Macdonald, and Sigal Gottlieb, Optimal implicit strong stability preserving Runge-Kutta methods, Appl. Numer. Math. 59 (2009), no. 2, 373–392. MR 2484928, DOI 10.1016/j.apnum.2008.03.034
- J. F. B. M. Kraaijevanger, Contractivity of Runge-Kutta methods, BIT 31 (1991), no. 3, 482–528. MR 1127488, DOI 10.1007/BF01933264
- S. N. Kruzkov, First order quasi-linear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217–243.
- A. Lafon and H. C. Yee, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations part iii. the effects of nonlinear source terms in reaction-convection equations, Comp. Fluid. Dyn. 6 (1996), 1–36.
- —, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations part iv. stability vs methods of discretizing nonlinear source terms in reaction-convection equations, Comp. Fluid. Dyn. 6 (1996), 89–123.
- Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. MR 1925043, DOI 10.1017/CBO9780511791253
- R. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys. 86 (1990), no. 1, 187–210. MR 1033905, DOI 10.1016/0021-9991(90)90097-K
- A. Martínez Gavara, High Resolution Schemes for Hyperbolic Conservation Laws with Source Terms, Ph.D. thesis, Universitat de València, http://www.tesisenxarxa.net/TDX-1111109-094349/, 2008.
- Lorenzo Pareschi and Giovanni Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput. 25 (2005), no. 1-2, 129–155. MR 2231946, DOI 10.1007/s10915-004-4636-4
- Steven J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J. Math. Biol. 34 (1995), no. 2, 148–176. MR 1366356, DOI 10.1007/BF00178771
- Hans Joachim Schroll and Ragnar Winther, Finite-difference schemes for scalar conservation laws with source terms, IMA J. Numer. Anal. 16 (1996), no. 2, 201–215. MR 1382716, DOI 10.1093/imanum/16.2.201
- Chi-Wang Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 6, 1073–1084. MR 963855, DOI 10.1137/0909073
- Eleuterio F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin, 1997. A practical introduction. MR 1474503, DOI 10.1007/978-3-662-03490-3
- J. M. Varah, Stability restrictions on second order, three level finite difference schemes for parabolic equations, SIAM J. Numer. Anal. 17 (1980), no. 2, 300–309. MR 567275, DOI 10.1137/0717025
- J. G. Verwer, J. G. Blom, and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Appl. Numer. Math. 20 (1996), no. 1-2, 191–209. Workshop on the method of lines for time-dependent problems (Lexington, KY, 1995). MR 1385244, DOI 10.1016/0168-9274(95)00126-3
Additional Information
- R. Donat
- Affiliation: Departament de Matemàtica Aplicada, Universitat de València, 46100 Burjassot, Spain
- Email: donat@uv.es
- I. Higueras
- Affiliation: Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain
- Email: higueras@unavarra.es
- A. Martínez-Gavara
- Affiliation: Departamento de Matemática Aplicada I, Universidad de Sevilla, 41012 Sevilla, Spain
- Email: gavara@us.es
- Received by editor(s): July 31, 2009
- Received by editor(s) in revised form: April 26, 2010, and July 6, 2010
- Published electronically: February 4, 2011
- Additional Notes: The authors acknowledge support from projects MTM2008-00974, MTM2008-00785, MTM2006-01275 and MTM2009-07719.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2097-2126
- MSC (2010): Primary 35L65, 65M20, 65L06, 65L20, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-2011-02463-4
- MathSciNet review: 2813350