Treatment of incompatible initial and boundary data for parabolic equations in higher dimension
HTML articles powered by AMS MathViewer
- by Qingshan Chen, Zhen Qin and Roger Temam PDF
- Math. Comp. 80 (2011), 2071-2096 Request permission
Abstract:
A new method is proposed to improve the numerical simulation of time dependent problems when the initial and boundary data are not compatible. Unlike earlier methods limited to space dimension one, this method can be used for any space dimension. When both methods are applicable (in space dimension one), the improvements in precision are comparable, but the method proposed here is not restricted by dimension.References
- L.K. Bieniasz, A singularity correction procedure for digital simulation of potential-step chronoamperometric transients in one–dimensional homogeneous reaction-diffusion systems, Electrochimica Acta 50 (2005), 3253–3261.
- John P. Boyd and Natasha Flyer, Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 281–309. MR 1702205, DOI 10.1016/S0045-7825(98)00358-2
- John P. Boyd and Natasha Flyer, Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 281–309. MR 1702205, DOI 10.1016/S0045-7825(98)00358-2
- John Rozier Cannon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Applications, vol. 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. With a foreword by Felix E. Browder. MR 747979, DOI 10.1017/CBO9781139086967
- Qingshan Chen, Zhen Qin, and Roger Temam, Numerical resolution near $t=0$ of nonlinear evolution equations in the presence of corner singularities in space dimension 1, Commun. Comput. Phys. 9 (2011), no. 3, 568–586. MR 2726818, DOI 10.4208/cicp.110909.160310s
- R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49 (1943), 1–23. MR 7838, DOI 10.1090/S0002-9904-1943-07818-4
- M. S. Engelman, R. L. Sani, and P. M. Gresho, The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow, Internat. J. Numer. Methods Fluids 2 (1982), no. 3, 225–238. MR 667793, DOI 10.1002/fld.1650020302
- Natasha Flyer and Bengt Fornberg, Accurate numerical resolution of transients in initial-boundary value problems for the heat equation, J. Comput. Phys. 184 (2003), no. 2, 526–539. MR 1959406, DOI 10.1016/S0021-9991(02)00034-7
- Natasha Flyer and Bengt Fornberg, On the nature of initial-boundary value solutions for dispersive equations, SIAM J. Appl. Math. 64 (2003/04), no. 2, 546–564. MR 2049663, DOI 10.1137/S0036139902415853
- Natasha Flyer and Paul N. Swarztrauber, The convergence of spectral and finite difference methods for initial-boundary value problems, SIAM J. Sci. Comput. 23 (2002), no. 5, 1731–1751. MR 1885081, DOI 10.1137/S1064827500374169
- C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
- P. M. Gresho, Incompressible fluid dynamics: some fundamental formulation issues, Annual review of fluid mechanics, Vol. 23, Annual Reviews, Palo Alto, CA, 1991, pp. 413–453. MR 1090333
- P.M. Gresho and R.L. Sani, On pressure boundary-conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids 7(10) (1987), 1111–1145.
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
- John G. Heywood, Auxiliary flux and pressure conditions for Navier-Stokes problems, Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn, Paderborn, 1979) Lecture Notes in Math., vol. 771, Springer, Berlin-New York, 1980, pp. 223–234. MR 565999
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275–311. MR 650052, DOI 10.1137/0719018
- Chang-Yeol Jung and Roger Temam, Numerical approximation of two-dimensional convection-diffusion equations with multiple boundary layers, Int. J. Numer. Anal. Model. 2 (2005), no. 4, 367–408. MR 2177629
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Translated from the Russian by S. Smith. MR 0241822, DOI 10.1090/mmono/023
- O. Ladyženskaya, On the convergence of Fourier series defining a solution of a mixed problem for hyperbolic equations, Doklady Akad. Nauk SSSR (N.S.) 85 (1952), 481–484 (Russian). MR 0051412
- O. A. Ladyženskaya, On solvability of the fundamental boundary problems for equations of parabolic and hyperbolic type, Dokl. Akad. Nauk SSSR (N.S.) 97 (1954), 395–398 (Russian). MR 0073834
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- A. Pazy, Semigroups of operators in Banach spaces, Equadiff 82 (Würzburg, 1982) Lecture Notes in Math., vol. 1017, Springer, Berlin, 1983, pp. 508–524. MR 726608, DOI 10.1007/BFb0103275
- Jeffrey B. Rauch and Frank J. Massey III, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303–318. MR 340832, DOI 10.1090/S0002-9947-1974-0340832-0
- Stephen Smale, Smooth solutions of the heat and wave equations, Comment. Math. Helv. 55 (1980), no. 1, 1–12. MR 569242, DOI 10.1007/BF02566671
- R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations, J. Differential Equations 43 (1982), no. 1, 73–92. MR 645638, DOI 10.1016/0022-0396(82)90075-4
- —, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, Reprint of the 1984 edition.
- Kevin E. Trenberth, Climate system modeling, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, Press Syndicate of the University of Cambridge, New York, NY, USA, 1992.
- Vidar Thomée and Lars Wahlbin, Convergence rates of parabolic difference schemes for non-smooth data, Math. Comp. 28 (1974), 1–13. MR 341889, DOI 10.1090/S0025-5718-1974-0341889-7
Additional Information
- Qingshan Chen
- Affiliation: Department of Scientific Computing, The Florida State University, Tallahassee, Florida 32306
- Email: qchen3@fsu.edu
- Zhen Qin
- Affiliation: The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, Indiana 47405
- Email: qinz@indiana.edu
- Roger Temam
- Affiliation: The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 171480
- Email: temam@indiana.edu
- Received by editor(s): February 18, 2010
- Received by editor(s) in revised form: July 16, 2010
- Published electronically: April 14, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 2071-2096
- MSC (2010): Primary 35K20; Secondary 65M06
- DOI: https://doi.org/10.1090/S0025-5718-2011-02469-5
- MathSciNet review: 2813349