Improvements to Turing’s method
HTML articles powered by AMS MathViewer
- by Timothy Trudgian PDF
- Math. Comp. 80 (2011), 2259-2279 Request permission
Abstract:
This article improves the estimate of the size of the definite integral of $S(t)$, the argument of the Riemann zeta-function. The primary application of this improvement is Turing’s Method for the Riemann zeta-function. Analogous improvements are given for the arguments of Dirichlet $L$-functions and of Dedekind zeta-functions.References
- R. J. Backlund. Sur les zéros de la fonction $\zeta (s)$ de Riemann. Comptes rendus de l’Académie des sciences, 158:1979–1982, 1914.
- Andrew R. Booker, Artin’s conjecture, Turing’s method, and the Riemann hypothesis, Experiment. Math. 15 (2006), no. 4, 385–407. MR 2293591, DOI 10.1080/10586458.2006.10128976
- Richard P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), no. 148, 1361–1372. MR 537983, DOI 10.1090/S0025-5718-1979-0537983-2
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931, DOI 10.1007/978-1-4757-5927-3
- H. M. Edwards, Riemann’s zeta function, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0466039
- X. Gourdon. The $10^{13}$ first zeros of the Riemann zeta-function and zeros computation at very large height. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf, 2004.
- M. N. Huxley, Exponential sums and the Riemann zeta function. V, Proc. London Math. Soc. (3) 90 (2005), no. 1, 1–41. MR 2107036, DOI 10.1112/S0024611504014959
- A. A. Karatsuba and M. A. Korolev. Approximation of an exponential sum by a shorter one. Doklady Mathematics, 75(1):36–38, 2007.
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- R. Sherman Lehman, Separation of zeros of the Riemann zeta-function, Math. Comp. 20 (1966), 523–541. MR 203909, DOI 10.1090/S0025-5718-1966-0203909-5
- R. Sherman Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. MR 258768, DOI 10.1112/plms/s3-20.2.303
- Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z 72 (1959/1960), 192–204. MR 0117200, DOI 10.1007/BF01162949
- Hans Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR 0364103, DOI 10.1007/978-3-642-80615-5
- Robert Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), no. 203, 415–440, S17–S23. MR 1195435, DOI 10.1090/S0025-5718-1993-1195435-0
- Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
- E. C. Titchmarsh. The zeros of the Riemann zeta-function. Proceedings of the Royal Society Series A, 151:234–255, 1935.
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- Emmanuel Tollis, Zeros of Dedekind zeta functions in the critical strip, Math. Comp. 66 (1997), no. 219, 1295–1321. MR 1423079, DOI 10.1090/S0025-5718-97-00871-5
- T. Trudgian. Gram’s Law fails a positive proportion of the time. arxiv.org/abs/0811.0883, 2008.
- A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. (3) 3 (1953), 99–117. MR 55785, DOI 10.1112/plms/s3-3.1.99
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Additional Information
- Timothy Trudgian
- Affiliation: Mathematical Institute, University of Oxford, OX1 3LB England
- Address at time of publication: Department of Mathematics and Computer Science, University of Lethbridge, University Drive W, Lethbridge, AB, T1K 3M4, Canada
- MR Author ID: 909247
- Email: tim.trudgian@uleth.ca
- Received by editor(s): December 9, 2009
- Received by editor(s) in revised form: August 2, 2010
- Published electronically: March 1, 2011
- Additional Notes: I wish to acknowledge the financial support of the General Sir John Monash Foundation, and Merton College, Oxford.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2259-2279
- MSC (2010): Primary 11M06, 11R42; Secondary 11M26
- DOI: https://doi.org/10.1090/S0025-5718-2011-02470-1
- MathSciNet review: 2813359