An improved lower bound for the de Bruijn-Newman constant
HTML articles powered by AMS MathViewer
- by Yannick Saouter, Xavier Gourdon and Patrick Demichel PDF
- Math. Comp. 80 (2011), 2281-2287 Request permission
Abstract:
In this article, we report on computations that led to the discovery of a new Lehmer pair of zeros for the Riemann $\zeta$ function. Given this new close pair of zeros, we improve the known lower bound for de Bruijn-Newman constant $\Lambda$. The Riemann hypothesis is equivalent to the assertion $\Lambda \leq 0$. In this article, we establish that in fact we have $\Lambda > -1.14541 \times 10^{-11}$. This new bound confirms the belief that if the Riemann hypothesis is true, it is barely true.References
- Jonathan M. Borwein, David M. Bradley, and Richard E. Crandall, Computational strategies for the Riemann zeta function, J. Comput. Appl. Math. 121 (2000), no. 1-2, 247–296. Numerical analysis in the 20th century, Vol. I, Approximation theory. MR 1780051, DOI 10.1016/S0377-0427(00)00336-8
- G. Csordas, T. S. Norfolk, and R. S. Varga, A lower bound for the de Bruijn-Newman constant $\Lambda$, Numer. Math. 52 (1988), no. 5, 483–497. MR 945095, DOI 10.1007/BF01400887
- G. Csordas, A. M. Odlyzko, W. Smith, and R. S. Varga, A new Lehmer pair of zeros and a new lower bound for the de Bruijn-Newman constant $\Lambda$, Electron. Trans. Numer. Anal. 1 (1993), no. Dec., 104–111 (electronic only). MR 1253639
- G. Csordas, A. Ruttan, and R. S. Varga, The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis, Numer. Algorithms 1 (1991), no. 3, 305–329. MR 1135299, DOI 10.1007/BF02142328
- George Csordas, Wayne Smith, and Richard S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant $\Lambda$, and the Riemann hypothesis, Constr. Approx. 10 (1994), no. 1, 107–129. MR 1260363, DOI 10.1007/BF01205170
- N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197–226. MR 37351, DOI 10.1215/S0012-7094-50-01720-0
- P. Dusart. Autour de la fonction qui compte le nombre de nombres premiers. PhD thesis, Université de Limoges, 1998.
- Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann, MPFR: a multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software 33 (2007), no. 2, Art. 13, 15. MR 2326955, DOI 10.1145/1236463.1236468
- X. Gourdon and P. Demichel. The first $10^{13}$ zeros of the Riemann Zeta function, and zeros computation at very large height. Available at http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e131e24.pdf, 2004.
- Haseo Ki, Young-One Kim, and Jungseob Lee, On the de Bruijn-Newman constant, Adv. Math. 222 (2009), no. 1, 281–306. MR 2531375, DOI 10.1016/j.aim.2009.04.003
- R. Sherman Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. MR 258768, DOI 10.1112/plms/s3-20.2.303
- Charles M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976), no. 2, 245–251 (1977). MR 434982, DOI 10.1090/S0002-9939-1976-0434982-5
- T. S. Norfolk, A. Ruttan, and R. S. Varga, A lower bound for the de Bruijn-Newman constant $\Lambda$. II, Progress in approximation theory (Tampa, FL, 1990) Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 403–418. MR 1240792, DOI 10.1007/978-1-4612-2966-7_{1}7
- A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), no. 177, 273–308. MR 866115, DOI 10.1090/S0025-5718-1987-0866115-0
- A. M. Odlyzko, An improved bound for the de Bruijn-Newman constant, Numer. Algorithms 25 (2000), no. 1-4, 293–303. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999). MR 1827160, DOI 10.1023/A:1016677511798
- A. M. Odlyzko and A. Schönhage, Fast algorithms for multiple evaluations of the Riemann zeta function, Trans. Amer. Math. Soc. 309 (1988), no. 2, 797–809. MR 961614, DOI 10.1090/S0002-9947-1988-0961614-2
- Robert Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), no. 203, 415–440, S17–S23. MR 1195435, DOI 10.1090/S0025-5718-1993-1195435-0
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- H. J. J. te Riele, A new lower bound for the de Bruijn-Newman constant, Numer. Math. 58 (1991), no. 6, 661–667. MR 1083527, DOI 10.1007/BF01385647
- T. Trudgian. Improvements to Turing’s method. http://arxiv.org/abs/0903.1885v1, March 2009.
- A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. (3) 3 (1953), 99–117. MR 55785, DOI 10.1112/plms/s3-3.1.99
- J. van de Lune. Unpublished, 2001.
- S. Wedeniwski. Zetagrid home page. http://www.zetagrid.net/, 2005.
Additional Information
- Yannick Saouter
- Affiliation: Institut Telecom Brest, Bretagne, France
- Email: Yannick.Saouter@telecom-bretagne.eu
- Xavier Gourdon
- Affiliation: Dassault Systemes, Velizy-Villacoublay, France
- Email: xgourdon@gmail.com
- Patrick Demichel
- Affiliation: Hewlett-Packard France, Les Ulis, France
- Email: patrick.demichel@hp.com
- Received by editor(s): May 7, 2009
- Received by editor(s) in revised form: August 6, 2010
- Published electronically: March 9, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2281-2287
- MSC (2010): Primary 11-04, 11M26, 11Y35, 11Y60
- DOI: https://doi.org/10.1090/S0025-5718-2011-02472-5
- MathSciNet review: 2813360