Dougall’s bilateral $_2H_2$-series and Ramanujan-like $\pi$-formulae
HTML articles powered by AMS MathViewer
- by Wenchang Chu PDF
- Math. Comp. 80 (2011), 2223-2251 Request permission
Abstract:
The modified Abel lemma on summation by parts is employed to investigate the partial sum of Dougall’s bilateral $_2H_2$-series. Several unusual transformations into fast convergent series are established. They lead surprisingly to numerous infinite series expressions for $\pi$, including several formulae discovered by Ramanujan (1914) and recently by Guillera (2008).References
- Victor Adamchik and Stan Wagon, A simple formula for $\pi$, Amer. Math. Monthly 104 (1997), no. 9, 852–855. MR 1479991, DOI 10.2307/2975292
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part II, Springer, New York, 2009. MR 2474043
- David H. Bailey and Jonathan M. Borwein, Experimental mathematics: examples, methods and implications, Notices Amer. Math. Soc. 52 (2005), no. 5, 502–514. MR 2140093
- David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997), no. 218, 903–913. MR 1415794, DOI 10.1090/S0025-5718-97-00856-9
- W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
- Nayandeep Deka Baruah and Bruce C. Berndt, Ramanujan’s series for $1/\pi$ arising from his cubic and quartic theories of elliptic functions, J. Math. Anal. Appl. 341 (2008), no. 1, 357–371. MR 2394090, DOI 10.1016/j.jmaa.2007.10.011
- N. D. Baruah and B. C. Berndt, Eisenstein series and Ramanujan–type series for $1/\pi$, Ramanujan J. (2009), DOI 10.1007/s11139-008-9155-8.
- Nayandeep Deka Baruah, Bruce C. Berndt, and Heng Huat Chan, Ramanujan’s series for $1/\pi$: a survey, Amer. Math. Monthly 116 (2009), no. 7, 567–587. MR 2549375, DOI 10.4169/193009709X458555
- G. Bauer, Von den Coefficienten der Reihen von Kugelfunctionen einer Variabeln, J. Reine Angew. Math. 56 (1859), 101–121.
- Bruce C. Berndt, Ramanujan’s notebooks. Part IV, Springer-Verlag, New York, 1994. MR 1261634, DOI 10.1007/978-1-4612-0879-2
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- J. M. Borwein and P. B. Borwein, More Ramanujan-type series for $1/\pi$, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 359–374. MR 938974
- J. M. Borwein and P. B. Borwein, Class number three Ramanujan type series for $1/\pi$, J. Comput. Appl. Math. 46 (1993), no. 1-2, 281–290. Computational complex analysis. MR 1222488, DOI 10.1016/0377-0427(93)90302-R
- Hei-Chi Chan, More formulas for $\pi$, Amer. Math. Monthly 113 (2006), no. 5, 452–455. MR 2225478, DOI 10.2307/27641953
- Heng Huat Chan, Song Heng Chan, and Zhiguo Liu, Domb’s numbers and Ramanujan-Sato type series for $1/\pi$, Adv. Math. 186 (2004), no. 2, 396–410. MR 2073912, DOI 10.1016/j.aim.2003.07.012
- Heng Huat Chan and Wen-Chin Liaw, Cubic modular equations and new Ramanujan-type series for $1/\pi$, Pacific J. Math. 192 (2000), no. 2, 219–238. MR 1744566, DOI 10.2140/pjm.2000.192.219
- Heng Huat Chan, Wen-Chin Liaw, and Victor Tan, Ramanujan’s class invariant $\lambda _n$ and a new class of series for $1/\pi$, J. London Math. Soc. (2) 64 (2001), no. 1, 93–106. MR 1840773, DOI 10.1017/S0024610701002241
- Wenchang Chu, Abel’s method on summation by parts and hypergeometric series, J. Difference Equ. Appl. 12 (2006), no. 8, 783–798. MR 2248785, DOI 10.1080/10236190600704096
- Wenchang Chu, Asymptotic method for Dougall’s bilateral hypergeometric sums, Bull. Sci. Math. 131 (2007), no. 5, 457–468. MR 2337736, DOI 10.1016/j.bulsci.2006.09.002
- D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR 938975
- J. Dougall, On Vandermonde’s theorem and some more general expansions, Proc. Edinburgh Math. Soc. 25 (1907), 114–132.
- J. W. L. Glaisher, On series for $1/\pi$ and $1/\pi ^2$, Q. J. Math. 37 (1905), 173–198.
- Boris Gourévitch and Jesús Guillera Goyanes, Construction of binomial sums for $\pi$ and polylogarithmic constants inspired by BBP formulas, Appl. Math. E-Notes 7 (2007), 237–246. MR 2346048
- Jesús Guillera, About a new kind of Ramanujan-type series, Experiment. Math. 12 (2003), no. 4, 507–510. MR 2044000, DOI 10.1080/10586458.2003.10504518
- Jesús Guillera, A new method to obtain series for $1/\pi$ and $1/\pi ^2$, Experiment. Math. 15 (2006), no. 1, 83–89. MR 2229388, DOI 10.1080/10586458.2006.10128943
- Jesús Guillera, A class of conjectured series representations for $1/\pi$, Experiment. Math. 15 (2006), no. 4, 409–414. MR 2293592, DOI 10.1080/10586458.2006.10128971
- Jesús Guillera, Generators of some Ramanujan formulas, Ramanujan J. 11 (2006), no. 1, 41–48. MR 2220656, DOI 10.1007/s11139-006-5306-y
- Jesús Guillera Goyanes, History of the formulas and algorithms for $\pi$, Gac. R. Soc. Mat. Esp. 10 (2007), no. 1, 159–178 (Spanish, with Spanish summary). MR 2331029
- Jesús Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J. 15 (2008), no. 2, 219–234. MR 2377577, DOI 10.1007/s11139-007-9074-0
- G. H. Hardy, The Indian Mathematician Ramanujan, Amer. Math. Monthly 44 (1937), no. 3, 137–155. MR 1523880, DOI 10.2307/2301659
- S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Pure Appl. Math. 45 (1914), 350–372.
- Mathew D. Rogers, New $_5F_4$ hypergeometric transformations, three-variable Mahler measures, and formulas for $1/\pi$, Ramanujan J. 18 (2009), no. 3, 327–340. MR 2495551, DOI 10.1007/s11139-007-9040-x
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, Calif., 1981. MR 604364
- V. V. Zudilin, More Ramanujan-type formulas for $1/\pi ^2$, Uspekhi Mat. Nauk 62 (2007), no. 3(375), 211–212 (Russian); English transl., Russian Math. Surveys 62 (2007), no. 3, 634–636. MR 2355427, DOI 10.1070/RM2007v062n03ABEH004420
Additional Information
- Wenchang Chu
- Affiliation: Hangzhou Normal University, Institute of Combinatorial Mathematics, Hangzhou 310036, People’s Republic of China
- Address at time of publication: Dipartimento di Matematica, Università del Salento, Lecce–Arnesano, P. O. Box 193, Lecce 73100 Italy
- MR Author ID: 213991
- Email: chu.wenchang@unisalento.it
- Received by editor(s): May 13, 2010
- Received by editor(s) in revised form: July 31, 2010
- Published electronically: March 2, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2223-2251
- MSC (2010): Primary 33C20; Secondary 40A25, 65B10
- DOI: https://doi.org/10.1090/S0025-5718-2011-02474-9
- MathSciNet review: 2813357