Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
HTML articles powered by AMS MathViewer
- by A. Bayad PDF
- Math. Comp. 80 (2011), 2219-2221 Request permission
Abstract:
We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. We give a very simple proof of them.References
- T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167. MR 43843, DOI 10.2140/pjm.1951.1.161
- R. Lipschitz, Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen, J. Reine und Angew. Math. CV (1889), 127–156.
- Hongmei Liu and Weiping Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math. 309 (2009), no. 10, 3346–3363. MR 2526753, DOI 10.1016/j.disc.2008.09.048
- Qiu-Ming Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp. 78 (2009), no. 268, 2193–2208. MR 2521285, DOI 10.1090/S0025-5718-09-02230-3
Additional Information
- A. Bayad
- Affiliation: Département de Mathématiques, Université d’Évry Val d’Essonne, Bd. F. Mitterrand, 91025 Évry Cedex, France
- Email: abayad@maths.univ-evry.fr
- Received by editor(s): July 19, 2010
- Received by editor(s) in revised form: August 14, 2010
- Published electronically: March 7, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2219-2221
- MSC (2010): Primary 11Yxx, 30D30
- DOI: https://doi.org/10.1090/S0025-5718-2011-02476-2
- MathSciNet review: 2813356