The impact of $\zeta (s)$ complex zeros on $\pi (x)$ for $x<10^{10^{13}}$
HTML articles powered by AMS MathViewer
- by Douglas A. Stoll and Patrick Demichel PDF
- Math. Comp. 80 (2011), 2381-2394 Request permission
Abstract:
An analysis of the local variations of the prime counting function $\pi (x)$ due to the impact of the non-trivial, complex zeros $\varrho _k$ of $\zeta (s)$ is provided for $x<10^{10^{13}}$ using up to 200 billion $\zeta (s)$ complex zeros. A new bound for $|\mathrm {li}(x)-\pi (x)|<x^{1/2}(\mathrm {log} \mathrm {log} \mathrm {log} x+e+1)/e \mathrm {log} x$ is proposed consistent with the error growth rate in Littlewood’s proof that $\mathrm {li}(x)-\pi (x)$ changes sign infinitely often. This bound is also consistent with all presently known cases where $\pi (x)>\mathrm {li}(x)$ including many new examples listed. This implies that Littlewood’s constant $\mathrm {K}=1/e$, the lower bound for Skewes’ number is $3.17\times 10^{114}$ and the positive constant $c$ in the Riemann Hypothesis equivalent $|\mathrm {li}(x)-\pi (x)|<c \mathrm {log}(x)x^{1/2}$ is less than $3\times 10^{-27}$.References
- Carter Bays and Richard H. Hudson, A new bound for the smallest $x$ with $\pi (x)>\textrm {li}(x)$, Math. Comp. 69 (2000), no. 231, 1285–1296. MR 1752093, DOI 10.1090/S0025-5718-99-01104-7
- E. Bogomolny, O. Bohigas, P. Leboeuf, and A. G. Monastra, On the spacing distribution of the Riemann zeros: corrections to the asymptotic result, J. Phys. A 39 (2006), no. 34, 10743–10754. MR 2257785, DOI 10.1088/0305-4470/39/34/010
- Richard P. Brent, Irregularities in the distribution of primes and twin primes, Math. Comp. 29 (1975), 43–56. MR 369287, DOI 10.1090/S0025-5718-1975-0369287-1
- Kuok Fai Chao and Roger Plymen, A new bound for the smallest $x$ with $\pi (x)>\textrm {li}(x)$, Int. J. Number Theory 6 (2010), no. 3, 681–690. MR 2652902, DOI 10.1142/S1793042110003125
- John Derbyshire, Prime obsession, Joseph Henry Press, Washington, DC, 2003. Bernhard Riemann and the greatest unsolved problem in mathematics. MR 1968857
- P. Demichel, The prime counting function and related subjects, (http:/demichel.net/patrick/li_crossover_pi.pdf), 2005.
- P. Demichel, Private correspondence, Aug 2008–Aug 2009.
- P. Dusart, Autour de la fonction qui compte le nombre de nobres premiers, doctoral thesis for l’Université de Limoges, 1998.
- H. M. Edwards, Riemann’s zeta function, Dover Publications, Inc., Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New York; MR0466039 (57 #5922)]. MR 1854455
- C.F. Gauss, Letter to Enke, December 24, 1849. “Werke”, Vol. II, 444-447.
- X. Gourdon and P. Demichel, The $10^{13}$ first zeros of the Riemann Zeta function and zeros computation at very large height, (http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf), 2004.
- J. Hadamard, Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220 (French). MR 1504264, DOI 10.24033/bsmf.545
- A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
- Helge von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), no. 1, 159–182 (French). MR 1554926, DOI 10.1007/BF02403071
- Tadej Kotnik, The prime-counting function and its analytic approximations: $\pi (x)$ and its approximations, Adv. Comput. Math. 29 (2008), no. 1, 55–70. MR 2420864, DOI 10.1007/s10444-007-9039-2
- Andry V. Kulsha, Unpublished paper and tables of minimum and maximum ${\pi }(x)$ variations, (http://www.primefan.ru/stuff/primes/table.html) (updated 7/4/2010).
- R. Sherman Lehman, On the difference $\pi (x)-\textrm {li}(x)$, Acta Arith. 11 (1966), 397–410. MR 202686, DOI 10.4064/aa-11-4-397-410
- J.E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris, 158: 1869-82, 1914.
- Laurenţiu Panaitopol, Inequalities concerning the function $\pi (x)$: applications, Acta Arith. 94 (2000), no. 4, 373–381. MR 1779949, DOI 10.4064/aa-94-4-373-381
- Paulo Ribenboim, The book of prime number records, 2nd ed., Springer-Verlag, New York, 1989. MR 1016815, DOI 10.1007/978-1-4684-0507-1
- B. Riemann, Über die Anzahl der Primzahlen unter einer gegebener Grösse, Monats. Preuss. Akad. Wiss., 671-680, 1859-60.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Hans Riesel, Prime numbers and computer methods for factorization, 2nd ed., Progress in Mathematics, vol. 126, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1292250, DOI 10.1007/978-1-4612-0251-6
- Hans Riesel and Gunnar Göhl, Some calculations related to Riemann’s prime number formula, Math. Comp. 24 (1970), 969–983. MR 277489, DOI 10.1090/S0025-5718-1970-0277489-3
- Michael Rubinstein and Peter Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), no. 3, 173–197. MR 1329368, DOI 10.1080/10586458.1994.10504289
- Yannick Saouter and Patrick Demichel, A sharp region where $\pi (x)-\textrm {li}(x)$ is positive, Math. Comp. 79 (2010), no. 272, 2395–2405. MR 2684372, DOI 10.1090/S0025-5718-10-02351-3
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337–360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- S. Skewes, On the difference ${\pi }(x)-\mathrm {li}(x)$, J. London Math. Soc. 8: 277-283, 1933.
- S. Skewes, On the difference $\pi (x)-\textrm {li}\,x$. II, Proc. London Math. Soc. (3) 5 (1955), 48–70. MR 67145, DOI 10.1112/plms/s3-5.1.48
- T. O. e Silva, Tables of values of pi(x) and of pi\textsubscript{2}(x), (http://www.ieeta.pt/~tos/primes.html), updated March 2010.
- Herman J. J. te Riele, On the sign of the difference $\pi (x)-\textrm {li}(x)$, Math. Comp. 48 (1987), no. 177, 323–328. MR 866118, DOI 10.1090/S0025-5718-1987-0866118-6
- de la Vallée Poussin, Recherches analytiques sur la théorie des nombres premiers, Ann. Soc. Sci. Bruxelles 20: 183-56, 1896.
Additional Information
- Douglas A. Stoll
- Affiliation: Boeing Research and Technology, Seattle, Washington
- Email: dstoll71@comcast.net
- Patrick Demichel
- Affiliation: Hewlett-Packard, Les Ulis, France
- Email: dmlpat@gmail.com
- Received by editor(s): November 4, 2009
- Received by editor(s) in revised form: August 6, 2010
- Published electronically: April 1, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2381-2394
- MSC (2010): Primary 11A41, 11M06, 11M26, 11N05
- DOI: https://doi.org/10.1090/S0025-5718-2011-02477-4
- MathSciNet review: 2813366