## Finite element approximations in a non-Lipschitz domain: Part II

HTML articles powered by AMS MathViewer

- by Gabriel Acosta and María G. Armentano PDF
- Math. Comp.
**80**(2011), 1949-1978 Request permission

## Abstract:

In a paper by R. Durán, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain $\Omega \subset \mathbb {R}^2$, and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the $L^2$ norm obtaining similar results by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces.

On the other hand, since the discrete domain $\Omega _h$ verifies $\Omega \subset \Omega _h$, in the above-mentioned paper the source term of the Poisson problem was taken equal to $0$ outside $\Omega$ in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations.

## References

- Gabriel Acosta, María G. Armentano, Ricardo G. Durán, and Ariel L. Lombardi,
*Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp*, J. Math. Anal. Appl.**310**(2005), no. 2, 397–411. MR**2022934**, DOI 10.1016/j.jmaa.2005.01.065 - Gabriel Acosta, María G. Armentano, Ricardo G. Durán, and Ariel L. Lombardi,
*Finite element approximations in a nonLipschitz domain*, SIAM J. Numer. Anal.**45**(2007), no. 1, 277–295. MR**2285855**, DOI 10.1137/050647797 - Gabriel Acosta and Ricardo G. Durán,
*The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations*, SIAM J. Numer. Anal.**37**(1999), no. 1, 18–36. MR**1721268**, DOI 10.1137/S0036142997331293 - Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - Thomas Apel,
*Anisotropic finite elements: local estimates and applications*, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. MR**1716824** - I. Babuška and A. K. Aziz,
*On the angle condition in the finite element method*, SIAM J. Numer. Anal.**13**(1976), no. 2, 214–226. MR**455462**, DOI 10.1137/0713021 - I. Babuška, R. B. Kellogg, and J. Pitkäranta,
*Direct and inverse error estimates for finite elements with mesh refinements*, Numer. Math.**33**(1979), no. 4, 447–471. MR**553353**, DOI 10.1007/BF01399326 - Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov,
*Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps*, Numer. Math.**100**(2005), no. 2, 165–184. MR**2135780**, DOI 10.1007/s00211-005-0588-3 - I. Babuška and J. Osborn,
*Eigenvalue problems*, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787. MR**1115240** - Ivo Babuška and Manil Suri,
*The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties*, SIAM Rev.**36**(1994), no. 4, 578–632. MR**1306924**, DOI 10.1137/1036141 - James J. Brannick, Hengguang Li, and Ludmil T. Zikatanov,
*Uniform convergence of the multigrid $V$-cycle on graded meshes for corner singularities*, Numer. Linear Algebra Appl.**15**(2008), no. 2-3, 291–306. MR**2397306**, DOI 10.1002/nla.574 - S. C. Brenner, J. Cui, F. Li, and L.-Y. Sung,
*A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem*, Numer. Math.**109**(2008), no. 4, 509–533. MR**2407321**, DOI 10.1007/s00211-008-0149-7 - Seng-Kee Chua,
*Extension theorems on weighted Sobolev spaces*, Indiana Univ. Math. J.**41**(1992), no. 4, 1027–1076. MR**1206339**, DOI 10.1512/iumj.1992.41.41053 - Lawrence C. Evans,
*Partial differential equations*, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR**2597943**, DOI 10.1090/gsm/019 - P. Grisvard,
*Elliptic problems in nonsmooth domains*, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR**775683** - Erwin Hernández and Rodolfo Rodriguez,
*Finite element approximation of spectral acoustic problems on curved domains*, Numer. Math.**97**(2004), no. 1, 131–158. MR**2045461**, DOI 10.1007/s00211-003-0501-x - Erwin Hernández and Rodolfo Rodríguez,
*Finite element approximation of spectral problems with Neumann boundary conditions on curved domains*, Math. Comp.**72**(2003), no. 243, 1099–1115. MR**1972729**, DOI 10.1090/S0025-5718-02-01467-9 - Jean Houot and Alexandre Munnier,
*On the motion and collisions of rigid bodies in an ideal fluid*, Asymptot. Anal.**56**(2008), no. 3-4, 125–158. MR**2394714** - A. Khelif, Equations aux derivees partiellles, C.R. Acad. Sc. Paris
**287**, pp. 1113-1116, 1978. - Vladimir G. Maz′ya and Sergei V. Poborchi,
*Differentiable functions on bad domains*, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. MR**1643072** - Geneviève Raugel,
*Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone*, C. R. Acad. Sci. Paris Sér. A-B**286**(1978), no. 18, A791–A794 (French, with English summary). MR**497667** - Jorge Alonso San Martín, Victor Starovoitov, and Marius Tucsnak,
*Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid*, Arch. Ration. Mech. Anal.**161**(2002), no. 2, 113–147. MR**1870954**, DOI 10.1007/s002050100172 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Michèle Vanmaele and Alexander Ženíšek,
*The combined effect of numerical integration and approximation of the boundary in the finite element method for eigenvalue problems*, Numer. Math.**71**(1995), no. 2, 253–273. MR**1347167**, DOI 10.1007/s002110050144

## Additional Information

**Gabriel Acosta**- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Email: gacosta@dm.uba.ar
**María G. Armentano**- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Email: garmenta@dm.uba.ar
- Received by editor(s): April 6, 2009
- Received by editor(s) in revised form: September 13, 2010
- Published electronically: April 1, 2011
- Additional Notes: This work was supported by ANPCyT under grants PICT 2006-01307 and PICT-2007-00910, and by the Universidad de Buenos Aires under grant X007 and by CONICET under grant PIP 5478/1438
- © Copyright 2011 American Mathematical Society
- Journal: Math. Comp.
**80**(2011), 1949-1978 - MSC (2010): Primary 65N30, 46E35
- DOI: https://doi.org/10.1090/S0025-5718-2011-02481-6
- MathSciNet review: 2813345