Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric
HTML articles powered by AMS MathViewer
- by Yuji Nakatsukasa PDF
- Math. Comp. 80 (2011), 2127-2142 Request permission
Abstract:
We present Gerschgorin-type eigenvalue inclusion sets applicable to generalized eigenvalue problems. Our sets are defined by circles in the complex plane in the standard Euclidean metric, and are easier to compute than known similar results. As one application we use our results to provide a forward error analysis for a computed eigenvalue of a diagonalizable pencil.References
- Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst (eds.), Templates for the solution of algebraic eigenvalue problems, Software, Environments, and Tools, vol. 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. A practical guide. MR 1792141, DOI 10.1137/1.9780898719581
- Xiao Shan Chen, On perturbation bounds of generalized eigenvalues for diagonalizable pairs, Numer. Math. 107 (2007), no. 1, 79–86. MR 2317828, DOI 10.1007/s00211-007-0082-1
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- V. Kostić, L. J. Cvetković, and R. S. Varga, Geršgorin-type localizations of generalized eigenvalues, Numer. Linear Algebra Appl. 16 (2009), no. 11-12, 883–898. MR 2567140, DOI 10.1002/nla.671
- Ren-Cang Li, On perturbations of matrix pencils with real spectra, a revisit, Math. Comp. 72 (2003), no. 242, 715–728. MR 1954964, DOI 10.1090/S0025-5718-02-01449-7
- Stanley C. Ogilvy, Excursions in geometry, Dover, 1990.
- Beresford N. Parlett, The symmetric eigenvalue problem, Classics in Applied Mathematics, vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original. MR 1490034, DOI 10.1137/1.9781611971163
- S. Geršhgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Mat. 1 7 (1931), 749–755.
- G. W. Stewart, Gershgorin theory for the generalized eigenvalue problem $Ax=\lambda Bx$, Math. Comput. 29 (1975), 600–606. MR 0379537, DOI 10.1090/S0025-5718-1975-0379537-3
- G. W. Stewart and Ji Guang Sun, Matrix perturbation theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. MR 1061154
- Richard S. Varga, Geršgorin and his circles, Springer Series in Computational Mathematics, vol. 36, Springer-Verlag, Berlin, 2004. MR 2093409, DOI 10.1007/978-3-642-17798-9
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
Additional Information
- Yuji Nakatsukasa
- Affiliation: Department of Mathematics, University of California, Davis, California 95616
- MR Author ID: 887438
- Email: ynakam@math.ucdavis.edu
- Received by editor(s): June 20, 2010
- Received by editor(s) in revised form: September 20, 2010
- Published electronically: March 30, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2127-2142
- MSC (2010): Primary 15A22, 15A42, 65F15
- DOI: https://doi.org/10.1090/S0025-5718-2011-02482-8
- MathSciNet review: 2813351