A polynomial interpolation process at quasi-Chebyshev nodes with the FFT
HTML articles powered by AMS MathViewer
- by Hiroshi Sugiura and Takemitsu Hasegawa PDF
- Math. Comp. 80 (2011), 2169-2184 Request permission
Abstract:
Interpolation polynomial $p_n$ at the Chebyshev nodes $\cos \pi j/n$ ($0\le j\le n$) for smooth functions is known to converge fast as $n\to \infty$. The sequence $\{p_n\}$ is constructed recursively and efficiently in $O(n\log _2n)$ flops for each $p_n$ by using the FFT, where $n$ is increased geometrically, $n=2^i$ ($i=2,3,\dots$), until an estimated error is within a given tolerance of $\varepsilon$. This sequence $\{2^j\}$, however, grows too fast to get $p_n$ of proper $n$, often a much higher accuracy than $\varepsilon$ being achieved. To cope with this problem we present quasi-Chebyshev nodes (QCN) at which $\{p_n\}$ can be constructed efficiently in the same order of flops as in the Chebyshev nodes by using the FFT, but with $n$ increasing at a slower rate. We search for the optimum set in the QCN that minimizes the maximum error of $\{p_n\}$. Numerical examples illustrate the error behavior of $\{p_n\}$ with the optimum nodes set obtained.References
- Zachary Battles and Lloyd N. Trefethen, An extension of MATLAB to continuous functions and operators, SIAM J. Sci. Comput. 25 (2004), no. 5, 1743–1770. MR 2087334, DOI 10.1137/S1064827503430126
- Jean-Paul Berrut and Lloyd N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004), no. 3, 501–517. MR 2115059, DOI 10.1137/S0036144502417715
- John P. Boyd, Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding, SIAM J. Numer. Anal. 40 (2002), no. 5, 1666–1682. MR 1950617, DOI 10.1137/S0036142901398325
- John P. Boyd and Daniel H. Gally, Numerical experiments on the accuracy of the Chebyshev-Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials, J. Comput. Appl. Math. 205 (2007), no. 1, 281–295. MR 2324840, DOI 10.1016/j.cam.2006.05.006
- Maria Branders and Robert Piessens, An extension of Clenshaw-Curtis quadrature, J. Comput. Appl. Math. 1 (1975), 55–65. MR 371022, DOI 10.1016/0771-050x(75)90009-1
- C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197–205. MR 117885, DOI 10.1007/BF01386223
- James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301. MR 178586, DOI 10.1090/S0025-5718-1965-0178586-1
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- W. Morven Gentleman, Implementing Clenshaw-Curtis quadrature. I. Methodology and experience, Comm. ACM 15 (1972), 337–342. MR 0327001, DOI 10.1145/355602.361310
- Takemitsu Hasegawa, Tatsuo Torii, and Ichizo Ninomiya, Generalized Chebyshev interpolation and its application to automatic quadrature, Math. Comp. 41 (1983), no. 164, 537–553. MR 717701, DOI 10.1090/S0025-5718-1983-0717701-6
- Takemitsu Hasegawa, Tatsuo Torii, and Hiroshi Sugiura, An algorithm based on the FFT for a generalized Chebyshev interpolation, Math. Comp. 54 (1990), no. 189, 195–210. MR 990599, DOI 10.1090/S0025-5718-1990-0990599-0
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1937591
- Henri J. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer Series in Information Sciences, vol. 2, Springer-Verlag, Berlin-New York, 1981. MR 606376, DOI 10.1007/978-3-662-00551-4
- R. B. Platte, L. N. Trefethen, Chebfun: A new kind of numerical computing, Report No. 08/13, Oxford University Computing Laboratory, October (2008).
- Daniel Potts, Gabriele Steidl, and Manfred Tasche, Fast algorithms for discrete polynomial transforms, Math. Comp. 67 (1998), no. 224, 1577–1590. MR 1474655, DOI 10.1090/S0025-5718-98-00975-2
- S. C. Reddy and J. A. C. Weideman, The accuracy of the Chebyshev differencing method for analytic functions, SIAM J. Numer. Anal. 42 (2005), no. 5, 2176–2187. MR 2139243, DOI 10.1137/040603280
- Ian H. Sloan and William E. Smith, Product integration with the Clenshaw-Curtis points: implementation and error estimates, Numer. Math. 34 (1980), no. 4, 387–401. MR 577405, DOI 10.1007/BF01403676
- G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms, Math. Comp. 56 (1991), no. 193, 281–296. MR 1052103, DOI 10.1090/S0025-5718-1991-1052103-1
- Hiroshi Sugiura and Tatsuo Torii, Polynomial interpolation on quasi-equidistributed nodes on the unit disk, SIAM J. Numer. Anal. 29 (1992), no. 4, 1154–1165. MR 1173191, DOI 10.1137/0729070
- Paul N. Swarztrauber, Symmetric FFTs, Math. Comp. 47 (1986), no. 175, 323–346. MR 842139, DOI 10.1090/S0025-5718-1986-0842139-3
- Lloyd N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50 (2008), no. 1, 67–87. MR 2403058, DOI 10.1137/060659831
- Jörg Waldvogel, Fast construction of the Fejér and Clenshaw-Curtis quadrature rules, BIT 46 (2006), no. 1, 195–202. MR 2214855, DOI 10.1007/s10543-006-0045-4
- J. A. C. Weideman and L. N. Trefethen, The kink phenomenon in Fejér and Clenshaw-Curtis quadrature, Numer. Math. 107 (2007), no. 4, 707–727. MR 2342649, DOI 10.1007/s00211-007-0101-2
Additional Information
- Hiroshi Sugiura
- Affiliation: Department of Information Systems and Mathematical Sciences, Nanzan University, Seto, Aichi, 489-0863, Japan
- Email: sugiurah@ms.nanzan-u.ac.jp
- Takemitsu Hasegawa
- Affiliation: Department of Information Science, University of Fukui, Fukui, 910-8507, Japan
- Email: hasegawa@fuis.fuis.u-fukui.ac.jp
- Received by editor(s): March 23, 2009
- Received by editor(s) in revised form: September 21, 2010
- Published electronically: March 31, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2169-2184
- MSC (2010): Primary 65D05, 41A10; Secondary 42A15
- DOI: https://doi.org/10.1090/S0025-5718-2011-02484-1
- MathSciNet review: 2813353