Divided differences of implicit functions
HTML articles powered by AMS MathViewer
- by Georg Muntingh and Michael Floater PDF
- Math. Comp. 80 (2011), 2185-2195 Request permission
Abstract:
Under general conditions, the equation $g(x,y) = 0$ implicitly defines $y$ locally as a function of $x$. In this article, we express divided differences of $y$ in terms of bivariate divided differences of $g$, generalizing a recent result on divided differences of inverse functions.References
- Carl de Boor, Divided differences, Surv. Approx. Theory 1 (2005), 46–69. MR 2221566
- Michael S. Floater and Tom Lyche, Two chain rules for divided differences and Faà di Bruno’s formula, Math. Comp. 76 (2007), no. 258, 867–877. MR 2291840, DOI 10.1090/S0025-5718-06-01916-8
- Michael S. Floater and Tom Lyche, Divided differences of inverse functions and partitions of a convex polygon, Math. Comp. 77 (2008), no. 264, 2295–2308. MR 2429886, DOI 10.1090/S0025-5718-08-02144-3
- Michael S. Floater and Tom Lyche, A Chain Rule for Multivariate Divided Differences (2009), available at http://folk.uio.no/michaelf/papers/fdbm.pdf.
- Xinghua Wang and Aimin Xu, On the divided difference form of Faà di Bruno’s formula. II, J. Comput. Math. 25 (2007), no. 6, 697–704. MR 2359959
- Cavaliere Francesco Faà di Bruno, Note sur une nouvelle formule de calcul différentiel, Quarterly J. Pure Appl. Math. 1 (1857), 359–360.
- Warren P. Johnson, The curious history of Faà di Bruno’s formula, Amer. Math. Monthly 109 (2002), no. 3, 217–234. MR 1903577, DOI 10.2307/2695352
- G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520. MR 1325915, DOI 10.1090/S0002-9947-96-01501-2
- Tom Wilde, Implicit higher derivatives, and a formula of Comtet and Fiolet (2008-05-17), available at http://arxiv.org/abs/0805.2674v1.
- Louis Comtet and Michel Fiolet, Sur les dérivées successives d’une fonction implicite, C. R. Acad. Sci. Paris Sér. A 278 (1974), 249–251 (French). MR 348055
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128, DOI 10.1007/978-94-010-2196-8
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
Additional Information
- Georg Muntingh
- Affiliation: CMA/Matematisk Institutt, P.B 1053, Blindern, N-0316, Oslo, Norway
- Email: georgmu@math.uio.no
- Michael Floater
- Affiliation: CMA/Matematisk Institutt, P.B 1053, Blindern, N-0316, Oslo, Norway
- Email: michaelf@ifi.uio.no
- Received by editor(s): January 15, 2010
- Received by editor(s) in revised form: September 24, 2010
- Published electronically: April 12, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2185-2195
- MSC (2010): Primary 26A24; Secondary 05A17, 41A05, 65D05
- DOI: https://doi.org/10.1090/S0025-5718-2011-02486-5
- MathSciNet review: 2813354