Computing generators of free modules over orders in group algebras II
HTML articles powered by AMS MathViewer
- by Werner Bley and Henri Johnston PDF
- Math. Comp. 80 (2011), 2411-2434 Request permission
Abstract:
Let $E$ be a number field and $G$ a finite group. Let $\mathcal {A}$ be any $\mathcal {O}_{E}$-order of full rank in the group algebra $E[G]$ and $X$ a (left) $\mathcal {A}$-lattice. In a previous article, we gave a necessary and sufficient condition for $X$ to be free of given rank $d$ over $\mathcal {A}$. In the case that (i) the Wedderburn decomposition $E[G] \cong \bigoplus _{\chi } M_{\chi }$ is explicitly computable and (ii) each $M_{\chi }$ is in fact a matrix ring over a field, this led to an algorithm that either gives elements $\alpha _{1}, \ldots , \alpha _{d} \in X$ such that $X=\mathcal {A}\alpha _{1} \oplus \cdots \oplus \mathcal {A}\alpha _{d}$ or determines that no such elements exist. In the present article, we generalise the algorithm by weakening condition (ii) considerably.References
- Werner Bley and Robert Boltje, Computation of locally free class groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 72–86. MR 2282916, DOI 10.1007/11792086_{6}
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Werner Bley and Henri Johnston, Computing generators of free modules over orders in group algebras, J. Algebra 320 (2008), no. 2, 836–852. MR 2422318, DOI 10.1016/j.jalgebra.2008.01.042
- Mark Benard and Murray M. Schacher, The Schur subgroup. II, J. Algebra 22 (1972), 378–385. MR 302747, DOI 10.1016/0021-8693(72)90155-X
- Werner Bley and Stephen M. J. Wilson, Computations in relative algebraic $K$-groups, LMS J. Comput. Math. 12 (2009), 166–194. MR 2564571, DOI 10.1112/S1461157000001480
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- Jean Cougnard, Un anneau d’entiers stablement libre et non libre, Experiment. Math. 3 (1994), no. 2, 129–136 (French, with English and French summaries). MR 1313877, DOI 10.1080/10586458.1994.10504284
- Jean Cougnard, Anneaux d’entiers stablement libres sur $\Bbb Z[H_8\times C_2]$, J. Théor. Nombres Bordeaux 10 (1998), no. 1, 163–201 (French, with English and French summaries). MR 1827291, DOI 10.5802/jtnb.224
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- W. Eberly, Computations for algebras and group representations, Ph.D. thesis, University of Toronto, 1989.
- Claus Fieker, Minimizing representations over number fields. II. Computations in the Brauer group, J. Algebra 322 (2009), no. 3, 752–765. MR 2531221, DOI 10.1016/j.jalgebra.2009.05.009
- C. Friedrichs, Berechnung von Maximalordnungen über Dedekindringen, Ph.D. thesis, Technische Universität Berlin, 2000.
- Emmanuel Hallouin and Christian Maire, Cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 595 (2006), 189–213. MR 2244802, DOI 10.1515/CRELLE.2006.048
- Ernst Kleinert, Units of classical orders: a survey, Enseign. Math. (2) 40 (1994), no. 3-4, 205–248. MR 1309127
- Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 39 (2010), no. 5, 1714–1747. MR 2592031, DOI 10.1137/080734467
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Richard G. Swan, Strong approximation and locally free modules, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lecture Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980, pp. 153–223. MR 584612
- Richard G. Swan, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983), 66–172. MR 703486, DOI 10.1515/crll.1983.342.66
Additional Information
- Werner Bley
- Affiliation: Fachbereich für Mathematik und Naturwissenschaften der Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
- Email: bley@mathematik.uni-kassel.de
- Henri Johnston
- Affiliation: St. John’s College, Cambridge CB2 1TP, United Kingdom
- MR Author ID: 776746
- ORCID: 0000-0001-5764-0840
- Email: H.Johnston@dpmms.cam.ac.uk
- Received by editor(s): June 23, 2010
- Received by editor(s) in revised form: September 15, 2010
- Published electronically: April 11, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2411-2434
- MSC (2010): Primary 11R33, 11Y40, 16Z05
- DOI: https://doi.org/10.1090/S0025-5718-2011-02488-9
- MathSciNet review: 2813368