An asymptotic form for the Stieltjes constants $\gamma _k(a)$ and for a sum $S_\gamma (n)$ appearing under the Li criterion
HTML articles powered by AMS MathViewer
- by Charles Knessl and Mark W. Coffey PDF
- Math. Comp. 80 (2011), 2197-2217 Request permission
Abstract:
We present several asymptotic analyses for quantities associated with the Riemann and Hurwitz zeta functions. We first determine the leading asymptotic behavior of the Stieltjes constants $\gamma _k(a)$. These constants appear in the regular part of the Laurent expansion of the Hurwitz zeta function. We then use asymptotic results for the Laguerre polynomials $L_n^\alpha$ to investigate a certain sum $S_\gamma (n)$ involving the constants $\gamma _k(1)$ that appears in application of the Li criterion for the Riemann hypothesis. We confirm the sublinear growth of $S_\gamma (n)+n$, which is consistent with the validity of the Riemann hypothesis.References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Washington, National Bureau of Standards (1964).
- William E. Briggs, Some constants associated with the Riemann zeta-function, Michigan Math. J. 3 (1955/56), 117â121. MR 76858
- Enrico Bombieri and Jeffrey C. Lagarias, Complements to Liâs criterion for the Riemann hypothesis, J. Number Theory 77 (1999), no. 2, 274â287. MR 1702145, DOI 10.1006/jnth.1999.2392
- Mark W. Coffey, Relations and positivity results for the derivatives of the Riemann $\xi$ function, J. Comput. Appl. Math. 166 (2004), no. 2, 525â534. MR 2041196, DOI 10.1016/j.cam.2003.09.003
- Mark W. Coffey, Toward verification of the Riemann hypothesis: application of the Li criterion, Math. Phys. Anal. Geom. 8 (2005), no. 3, 211â255. MR 2177467, DOI 10.1007/s11040-005-7584-9
- M. W. Coffey, Polygamma theory, the Li/Keiper constants, and the Li criterion for the Riemann hypothesis, Rocky Mtn. J. Math. 40, 1841-1862, (2010).
- Mark W. Coffey, The theta-Laguerre calculus formulation of the Li/Keiper constants, J. Approx. Theory 146 (2007), no. 2, 267â275. MR 2328184, DOI 10.1016/j.jat.2006.10.006
- Mark W. Coffey, New results on the Stieltjes constants: asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), no. 2, 603â612. MR 2209581, DOI 10.1016/j.jmaa.2005.06.048
- M. W. Coffey, Series representations for the Stieltjes constants, arXiv:0905.1111 (2009).
- M. W. Coffey, The Stieltjes constants, their relation to the $\eta _j$ coefficients, and representation of the Hurwitz zeta function, arXiv/math-ph/0706.0343v2 (2007); Analysis 99, 1001-1021 (2010).
- M. W. Coffey, Series of zeta values, the Stieltjes constants, and a sum $S_\gamma (n)$, arXiv/math.ph/0706.0345v2 (2007).
- http://dlmf.nist.gov/18.15
- T. M. Dunster, Uniform asymptotic expansions for Whittakerâs confluent hypergeometric functions, SIAM J. Math. Anal. 20 (1989), no. 3, 744â760. MR 990876, DOI 10.1137/0520052
- H. M. Edwards, Riemannâs zeta function, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0466039
- C. L. Frenzen and R. Wong, Uniform asymptotic expansions of Laguerre polynomials, SIAM J. Math. Anal. 19 (1988), no. 5, 1232â1248. MR 957682, DOI 10.1137/0519087
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. TseÄtlin]; Translated from the Russian. MR 582453
- G. H. Hardy, Note on Dr. Vaccaâs series for $\gamma$, Quart. J. Pure Appl. Math. 43, 215-216 (1912).
- Aleksandar IviÄ, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- J. B. Keiper, Power series expansions of Riemannâs $\xi$ function, Math. Comp. 58 (1992), no. 198, 765â773. MR 1122072, DOI 10.1090/S0025-5718-1992-1122072-5
- J. C. Kluyver, On certain series of Mr. Hardy, Quart. J. Pure Appl. Math. 50, 185-192 (1927).
- Charles Knessl and Mark W. Coffey, An effective asymptotic formula for the Stieltjes constants, Math. Comp. 80 (2011), no. 273, 379â386. MR 2728984, DOI 10.1090/S0025-5718-2010-02390-7
- Rick Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp. 72 (2003), no. 243, 1379â1397. MR 1972742, DOI 10.1090/S0025-5718-02-01483-7
- Xian-Jin Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), no. 2, 325â333. MR 1462847, DOI 10.1006/jnth.1997.2137
- Yasushi Matsuoka, On the power series coefficients of the Riemann zeta function, Tokyo J. Math. 12 (1989), no. 1, 49â58. MR 1001731, DOI 10.3836/tjm/1270133547
- Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984) World Sci. Publishing, Singapore, 1985, pp. 279â295. MR 827790
- DragiĆĄa MitroviÄ, The signs of some constants associated with the Riemann zeta-function, Michigan Math. J. 9 (1962), 395â397. MR 164941
- Benjamin Muckenhoupt, Asymptotic forms for Laguerre polynomials, Proc. Amer. Math. Soc. 24 (1970), 288â292. MR 251272, DOI 10.1090/S0002-9939-1970-0251272-9
- Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619, DOI 10.1201/9781439864548
- B. Riemann, Ăber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monats. Preuss. Akad. Wiss., 671 (1859-1860).
- R. Smith, private communication (2010).
- T. J. Stieltjes, Correspondance dâHermite et de Stieltjes, Volumes 1 and 2, Gauthier-Villars, Paris (1905).
- GĂĄbor SzegĆ, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- Walter Van Assche, Erratum to: âWeighted zero distribution for polynomials orthogonal on an infinite intervalâ [SIAM J. Math. Anal. 16 (1985), no. 6, 1317â1334; MR0807913 (87c:42024)], SIAM J. Math. Anal. 32 (2001), no. 5, 1169â1170. MR 1828322, DOI 10.1137/S0036141099359871
- J. R. Wilton, A note on the coefficients in the expansion of $\zeta (s,x)$ in powers of $s-1$, Quart. J. Pure Appl. Math. 50, 329-332 (1927).
- Nan Yue Zhang and Kenneth S. Williams, Some results on the generalized Stieltjes constants, Analysis 14 (1994), no. 2-3, 147â162. MR 1302533, DOI 10.1024/1661-8157/a000249
Additional Information
- Charles Knessl
- Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607-7045
- Email: knessl@uic.edu
- Mark W. Coffey
- Affiliation: Department of Physics, Colorado School of Mines, Golden, Colorado 80401
- Email: mcoffey@mines.edu
- Received by editor(s): June 18, 2010
- Received by editor(s) in revised form: September 28, 2010
- Published electronically: May 11, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 2197-2217
- MSC (2010): Primary 41A60, 30E15, 11M06
- DOI: https://doi.org/10.1090/S0025-5718-2011-02497-X
- MathSciNet review: 2813355