Evaluating Whittaker functions and Maass forms for $SL(3,\mathbb {Z})$
HTML articles powered by AMS MathViewer
- by Borislav Mezhericher PDF
- Math. Comp. 80 (2011), 2299-2313 Request permission
Abstract:
We present and compare several algorithms for evaluating Jacquet’s Whittaker functions for $SL(3,\mathbb {Z})$. The most suitable algorithm is then applied to the problem of evaluating a Maass form for $SL(3,\mathbb {Z})$ with known eigenvalues and Fourier coefficients.References
- Daniel Bump and Jonathan Huntley, Unramified Whittaker functions for $\textrm {GL}(3,\textbf {R})$, J. Anal. Math. 65 (1995), 19–44. MR 1335367, DOI 10.1007/BF02788764
- Ce Bian, Computing $\textrm {GL}(3)$ automorphic forms, Bull. Lond. Math. Soc. 42 (2010), no. 5, 827–842. MR 2721743, DOI 10.1112/blms/bdq038
- —, Refining GL(3) forms, 2010, http://www.maths.bris.ac.uk/~macxb/.
- Andrew R. Booker, Uncovering a new $L$-function, Notices Amer. Math. Soc. 55 (2008), no. 9, 1088–1094. MR 2451344
- Kevin A. Broughan, Computing Casimir operators for the generalized upper half plane, Int. J. Pure Appl. Math. 41 (2007), no. 4, 549–560. MR 2376247
- Kevin A. Broughan, Evaluating Jacquet’s $\textrm {GL}(n)$ Whittaker function, Math. Comp. 78 (2009), no. 266, 1061–1072. MR 2476570, DOI 10.1090/S0025-5718-08-02158-3
- Andrew R. Booker, Andreas Strömbergsson, and Akshay Venkatesh, Effective computation of Maass cusp forms, Int. Math. Res. Not. , posted on (2006), Art. ID 71281, 34. MR 2249995, DOI 10.1155/IMRN/2006/71281
- Daniel Bump, Automorphic forms on $\textrm {GL}(3,\textbf {R})$, Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984. MR 765698, DOI 10.1007/BFb0100147
- Henry E. Fettis, Numerical calculation of certain definite integrals by Poisson’s summation formula, Math. Tables Aids Comput. 9 (1955), 85–92. MR 72546, DOI 10.1090/S0025-5718-1955-0072546-0
- David W. Farmer, Sally Koutsoliotas, and Stefan Lemurell, A direct search for degree-3 $L$-functions, In preparation, 2008.
- Dorian Goldfeld, Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662, DOI 10.1017/CBO9780511542923
- Hervé Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243–309 (French). MR 271275, DOI 10.24033/bsmf.1654
- Min Lee, Approximate converse theorem for PGL$(3,\mathbb {R})$, In preparation, 2009.
- Yudell L. Luke, The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. MR 0241700
- Borislav Mezhericher, Computer code for evaluating Whittaker functions and Maass forms for $SL(3,\mathbb {Z})$, 2009, http://www.math.columbia.edu/~boris/.
- Masatake Mori, Discovery of the double exponential transformation and its developments, Publ. Res. Inst. Math. Sci. 41 (2005), no. 4, 897–935. MR 2198131, DOI 10.2977/prims/1145474600
- I. I. Pjateckij-Šapiro, Euler subgroups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 597–620. MR 0406935
- Michael Rubinstein, Computational methods and experiments in analytic number theory, Recent perspectives in random matrix theory and number theory, London Math. Soc. Lecture Note Ser., vol. 322, Cambridge Univ. Press, Cambridge, 2005, pp. 425–506. MR 2166470, DOI 10.1017/CBO9780511550492.015
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171–193. MR 348047, DOI 10.2307/1971071
- Eric Stade, On explicit integral formulas for $\textrm {GL}(n,\textbf {R})$-Whittaker functions, Duke Math. J. 60 (1990), no. 2, 313–362. With an appendix by Daniel Bump, Solomon Friedberg and Jeffrey Hoffstein. MR 1047756, DOI 10.1215/S0012-7094-90-06013-2
- The PARI Group, Bordeaux, PARI/GP, version 2.2.1, 2005, Available from http://pari.math.u-bordeaux.fr/.
- A. I. Vinogradov and L. A. Tahtadžjan, Theory of the Eisenstein series for the group $\textrm {SL}(3,\,\textbf {R})$ and its application to a binary problem. I. Fourier expansion of the highest Eisenstein series, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 76 (1978), 5–52, 216 (Russian). Analytic number theory and the theory of functions. MR 527787
Additional Information
- Borislav Mezhericher
- Affiliation: 360 East South Water Street, Apt. 1808, Chicago, Illinois 60601
- Email: mboris@gmail.com
- Received by editor(s): January 3, 2010
- Received by editor(s) in revised form: September 30, 2010
- Published electronically: April 13, 2011
- Additional Notes: The research of the author was supported in part by Dorian Goldfeld’s NSF grant 0652554
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 2299-2313
- MSC (2010): Primary 11-04, 11E76, 22E30
- DOI: https://doi.org/10.1090/S0025-5718-2011-02499-3
- MathSciNet review: 2813362