## Evaluating Whittaker functions and Maass forms for $SL(3,\mathbb {Z})$

HTML articles powered by AMS MathViewer

- by Borislav Mezhericher PDF
- Math. Comp.
**80**(2011), 2299-2313 Request permission

## Abstract:

We present and compare several algorithms for evaluating Jacquet’s Whittaker functions for $SL(3,\mathbb {Z})$. The most suitable algorithm is then applied to the problem of evaluating a Maass form for $SL(3,\mathbb {Z})$ with known eigenvalues and Fourier coefficients.## References

- Daniel Bump and Jonathan Huntley,
*Unramified Whittaker functions for $\textrm {GL}(3,\textbf {R})$*, J. Anal. Math.**65**(1995), 19–44. MR**1335367**, DOI 10.1007/BF02788764 - Ce Bian,
*Computing $\textrm {GL}(3)$ automorphic forms*, Bull. Lond. Math. Soc.**42**(2010), no. 5, 827–842. MR**2721743**, DOI 10.1112/blms/bdq038 - —,
*Refining GL(3) forms*, 2010, http://www.maths.bris.ac.uk/~macxb/. - Andrew R. Booker,
*Uncovering a new $L$-function*, Notices Amer. Math. Soc.**55**(2008), no. 9, 1088–1094. MR**2451344** - Kevin A. Broughan,
*Computing Casimir operators for the generalized upper half plane*, Int. J. Pure Appl. Math.**41**(2007), no. 4, 549–560. MR**2376247** - Kevin A. Broughan,
*Evaluating Jacquet’s $\textrm {GL}(n)$ Whittaker function*, Math. Comp.**78**(2009), no. 266, 1061–1072. MR**2476570**, DOI 10.1090/S0025-5718-08-02158-3 - Andrew R. Booker, Andreas Strömbergsson, and Akshay Venkatesh,
*Effective computation of Maass cusp forms*, Int. Math. Res. Not. , posted on (2006), Art. ID 71281, 34. MR**2249995**, DOI 10.1155/IMRN/2006/71281 - Daniel Bump,
*Automorphic forms on $\textrm {GL}(3,\textbf {R})$*, Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984. MR**765698**, DOI 10.1007/BFb0100147 - Henry E. Fettis,
*Numerical calculation of certain definite integrals by Poisson’s summation formula*, Math. Tables Aids Comput.**9**(1955), 85–92. MR**72546**, DOI 10.1090/S0025-5718-1955-0072546-0 - David W. Farmer, Sally Koutsoliotas, and Stefan Lemurell,
*A direct search for degree-3 $L$-functions*, In preparation, 2008. - Dorian Goldfeld,
*Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$*, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR**2254662**, DOI 10.1017/CBO9780511542923 - Hervé Jacquet,
*Fonctions de Whittaker associées aux groupes de Chevalley*, Bull. Soc. Math. France**95**(1967), 243–309 (French). MR**271275**, DOI 10.24033/bsmf.1654 - Min Lee,
*Approximate converse theorem for PGL$(3,\mathbb {R})$*, In preparation, 2009. - Yudell L. Luke,
*The special functions and their approximations, Vol. I*, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. MR**0241700** - Borislav Mezhericher,
*Computer code for evaluating Whittaker functions and Maass forms for $SL(3,\mathbb {Z})$*, 2009, http://www.math.columbia.edu/~boris/. - Masatake Mori,
*Discovery of the double exponential transformation and its developments*, Publ. Res. Inst. Math. Sci.**41**(2005), no. 4, 897–935. MR**2198131**, DOI 10.2977/prims/1145474600 - I. I. Pjateckij-Šapiro,
*Euler subgroups*, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 597–620. MR**0406935** - Michael Rubinstein,
*Computational methods and experiments in analytic number theory*, Recent perspectives in random matrix theory and number theory, London Math. Soc. Lecture Note Ser., vol. 322, Cambridge Univ. Press, Cambridge, 2005, pp. 425–506. MR**2166470**, DOI 10.1017/CBO9780511550492.015 - J. A. Shalika,
*The multiplicity one theorem for $\textrm {GL}_{n}$*, Ann. of Math. (2)**100**(1974), 171–193. MR**348047**, DOI 10.2307/1971071 - Eric Stade,
*On explicit integral formulas for $\textrm {GL}(n,\textbf {R})$-Whittaker functions*, Duke Math. J.**60**(1990), no. 2, 313–362. With an appendix by Daniel Bump, Solomon Friedberg and Jeffrey Hoffstein. MR**1047756**, DOI 10.1215/S0012-7094-90-06013-2 - The PARI Group, Bordeaux,
*PARI/GP, version 2.2.1*, 2005, Available from http://pari.math.u-bordeaux.fr/. - A. I. Vinogradov and L. A. Tahtadžjan,
*Theory of the Eisenstein series for the group $\textrm {SL}(3,\,\textbf {R})$ and its application to a binary problem. I. Fourier expansion of the highest Eisenstein series*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**76**(1978), 5–52, 216 (Russian). Analytic number theory and the theory of functions. MR**527787**

## Additional Information

**Borislav Mezhericher**- Affiliation: 360 East South Water Street, Apt. 1808, Chicago, Illinois 60601
- Email: mboris@gmail.com
- Received by editor(s): January 3, 2010
- Received by editor(s) in revised form: September 30, 2010
- Published electronically: April 13, 2011
- Additional Notes: The research of the author was supported in part by Dorian Goldfeld’s NSF grant 0652554
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**80**(2011), 2299-2313 - MSC (2010): Primary 11-04, 11E76, 22E30
- DOI: https://doi.org/10.1090/S0025-5718-2011-02499-3
- MathSciNet review: 2813362