Universal cycles for minimum coverings of pairs by triples, with application to 2-radius sequences
HTML articles powered by AMS MathViewer
- by Yeow Meng Chee, San Ling, Yin Tan and Xiande Zhang;
- Math. Comp. 81 (2012), 585-603
- DOI: https://doi.org/10.1090/S0025-5718-2011-02473-7
- Published electronically: June 21, 2011
- PDF | Request permission
Abstract:
A new ordering, extending the notion of universal cycles of Chung et al. (1992), is proposed for the blocks of $k$-uniform set systems. Existence of minimum coverings of pairs by triples that possess such an ordering is established for all orders. The application to the construction of short 2-radius sequences is given, along with some new 2-radius sequences found through a computer search.References
- Alok Aggarwal and Jeffrey Scott Vitter, The input/output complexity of sorting and related problems, Comm. ACM 31 (1988), no. 9, 1116–1127. MR 1021794, DOI 10.1145/48529.48535
- Brian Alspach, Katherine Heinrich, and Bojan Mohar, A note on Hamilton cycles in block-intersection graphs, Finite geometries and combinatorial designs (Lincoln, NE, 1987) Contemp. Math., vol. 111, Amer. Math. Soc., Providence, RI, 1990, pp. 1–4. MR 1079733, DOI 10.1090/conm/111/1079733
- James R. Bitner, Gideon Ehrlich, and Edward M. Reingold, Efficient generation of the binary reflected Gray code and its applications, Comm. ACM 19 (1976), no. 9, 517–521. MR 424386, DOI 10.1145/360336.360343
- S. R. Blackburn and J. F. Mckee, Constructing $k$-radius sequences, arXiv:1006.5812v1 (2010).
- A. E. Brouwer, A. Schrijver, and H. Hanani, Group divisible designs with block-size four, Discrete Math. 20 (1977/78), no. 1, 1–10. MR 465894, DOI 10.1016/0012-365X(77)90037-1
- Fan Chung, Persi Diaconis, and Ron Graham, Universal cycles for combinatorial structures, Discrete Math. 110 (1992), no. 1-3, 43–59. MR 1197444, DOI 10.1016/0012-365X(92)90699-G
- Charles J. Colbourn, Dean G. Hoffman, and Rolf Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59 (1992), no. 1, 73–89. MR 1141323, DOI 10.1016/0097-3165(92)90099-G
- Charles J. Colbourn and Alexander Rosa, Triple systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. MR 1843379
- N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946), 758–764 = Indagationes Math. 8, 461–467 (1946). MR 18142
- Megan Dewar, Gray codes, Universal cycles and configuration orderings for block designs, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)–Carleton University (Canada). MR 2711021
- Peter Eades and Brendan McKay, An algorithm for generating subsets of fixed size with a strong minimal change property, Inform. Process. Lett. 19 (1984), no. 3, 131–133. MR 782221, DOI 10.1016/0020-0190(84)90091-7
- M. K. Fort Jr. and G. A. Hedlund, Minimal coverings of pairs by triples, Pacific J. Math. 8 (1958), 709–719. MR 103831
- Sakti P. Ghosh, Consecutive storage of relevant records with redundancy, Comm. ACM 18 (1975), no. 8, 464–471. MR 383863, DOI 10.1145/360933.360991
- J. W. Gilkerson and J. W. Jaromczyk, Restoring the order of images in a sequence of MRI slices, unpublished manuscript (2002).
- J. W. Gilkerson, J. W. Jaromczyk, and Z. Lonc, On constructing sequences of radius $k$ using finite geometries, unpublished manuscript.
- F. Gray, Pulse code communication, 1953 (file 1947), US Patent 2,632,058.
- H.-D. O. F. Gronau, R. C. Mullin, and Ch. Pietsch, The closure of all subsets of $\{3,4,\cdots ,10\}$ which include $3$, Ars Combin. 41 (1995), 129–161. MR 1365159
- Donovan R. Hare, Cycles in the block-intersection graph of pairwise balanced designs, Discrete Math. 137 (1995), no. 1-3, 211–221. MR 1312454, DOI 10.1016/0012-365X(93)E0140-Y
- Peter Horák, David A. Pike, and Michael E. Raines, Hamilton cycles in block-intersection graphs of triple systems, J. Combin. Des. 7 (1999), no. 4, 243–246. MR 1691408, DOI 10.1002/(SICI)1520-6610(1999)7:4<243::AID-JCD2>3.3.CO;2-1
- Peter Horák and Alexander Rosa, Decomposing Steiner triple systems into small configurations, Ars Combin. 26 (1988), 91–105. MR 982111
- Glenn Hurlbert, On universal cycles for $k$-subsets of an $n$-set, SIAM J. Discrete Math. 7 (1994), no. 4, 598–604. MR 1299088, DOI 10.1137/S0895480191220861
- B. Jackson, Universal cycles of $4$-subsets and $5$-subsets, unpublished manuscript.
- B. W. Jackson, Universal cycles of $k$-subsets and $k$-permutations, Discrete Math. 117 (1993), no. 1-3, 141–150. MR 1226137, DOI 10.1016/0012-365X(93)90330-V
- Jerzy W. Jaromczyk and Zbigniew Lonc, Sequences of radius $k$: how to fetch many huge objects into small memory for pairwise computations, Algorithms and computation, Lecture Notes in Comput. Sci., vol. 3341, Springer, Berlin, 2004, pp. 594–605. MR 2158364, DOI 10.1007/978-3-540-30551-4_{5}2
- Hanfried Lenz, Some remarks on pairwise balanced designs, Mitt. Math. Sem. Giessen 165 (1984), 49–62. MR 745869
- Frank Ruskey, Adjacent interchange generation of combinations, J. Algorithms 9 (1988), no. 2, 162–180. MR 936104, DOI 10.1016/0196-6774(88)90036-3
- Carla Savage, A survey of combinatorial Gray codes, SIAM Rev. 39 (1997), no. 4, 605–629. MR 1491049, DOI 10.1137/S0036144595295272
- Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir, Towards a theory of cache-efficient algorithms, J. ACM 49 (2002), no. 6, 828–858. MR 2145858, DOI 10.1145/602220.602225
- Charles J. Colbourn and Jeffrey H. Dinitz (eds.), Handbook of combinatorial designs, 2nd ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2246267
- Richard M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972), 220–245. MR 304203, DOI 10.1016/0097-3165(72)90028-3
Bibliographic Information
- Yeow Meng Chee
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- Email: ymchee@ntu.edu.sg
- San Ling
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- Email: lingsan@ntu.edu.sg
- Yin Tan
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- Email: tanyin@ntu.edu.sg
- Xiande Zhang
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- Email: ziandezhang@ntu.edu.sg
- Received by editor(s): September 20, 2009
- Received by editor(s) in revised form: August 6, 2010
- Published electronically: June 21, 2011
- Additional Notes: This research was supported in part by the National Research Foundation of Singapore under Research Grant NRF-CRP2-2007-03 and by the Nanyang Technological University under Research Grant M58110040.
- © Copyright 2011 American Mathematical Society
- Journal: Math. Comp. 81 (2012), 585-603
- MSC (2010): Primary 05B05, 05B07, 05B40; Secondary 05C38, 68R05
- DOI: https://doi.org/10.1090/S0025-5718-2011-02473-7
- MathSciNet review: 2833510