Multigrid analysis for the time dependent Stokes problem
HTML articles powered by AMS MathViewer
- by Maxim A. Olshanskii;
- Math. Comp. 81 (2012), 57-79
- DOI: https://doi.org/10.1090/S0025-5718-2011-02494-4
- Published electronically: May 23, 2011
- PDF | Request permission
Abstract:
Certain implicit time stepping procedures for the incompressible Stokes or Navier-Stokes equations lead to a singular-perturbed Stokes type problem at each time step. The paper presents a convergence analysis of a geometric multigrid solver for the system of linear algebraic equations resulting from the disretization of the problem using a finite element method. Several smoothing iterative methods are considered: a smoother based on distributive iterations, the Braess-Sarazin and inexact Uzawa smoother. Convergence analysis is based on smoothing and approximation properties in special norms. A robust (independent of time step and mesh parameter) estimate is proved for the two-grid and multigrid W-cycle convergence factors.References
- D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), no. 4, 337–344 (1985). MR 799997, DOI 10.1007/BF02576171
- Randolph E. Bank, Bruno D. Welfert, and Harry Yserentant, A class of iterative methods for solving saddle point problems, Numer. Math. 56 (1990), no. 7, 645–666. MR 1031439, DOI 10.1007/BF01405194
- Michele Benzi, Gene H. Golub, and Jörg Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005), 1–137. MR 2168342, DOI 10.1017/S0962492904000212
- M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), no. 2, 211–224. MR 549450, DOI 10.1007/BF01399555
- Dietrich Braess and Wolfgang Dahmen, A cascadic multigrid algorithm for the Stokes equations, Numer. Math. 82 (1999), no. 2, 179–191. MR 1685458, DOI 10.1007/s002110050416
- D. Braess and R. Sarazin, An efficient smoother for the Stokes problem, Appl. Numer. Math. 23 (1997), no. 1, 3–19. Multilevel methods (Oberwolfach, 1995). MR 1438078, DOI 10.1016/S0168-9274(96)00059-1
- J. H. Bramble and J. E. Pasciak, Iterative techniques for time dependent Stokes problems, Comput. Math. Appl. 33 (1997), no. 1-2, 13–30. Approximation theory and applications. MR 1442058, DOI 10.1016/S0898-1221(96)00216-7
- Susanne C. Brenner, A nonconforming multigrid method for the stationary Stokes equations, Math. Comp. 55 (1990), no. 192, 411–437. MR 1035927, DOI 10.1090/S0025-5718-1990-1035927-5
- James H. Bramble, Joseph E. Pasciak, and Olaf Steinbach, On the stability of the $L^2$ projection in $H^1(\Omega )$, Math. Comp. 71 (2002), no. 237, 147–156. MR 1862992, DOI 10.1090/S0025-5718-01-01314-X
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 17–351. MR 1115237
- Monique Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no. 1, 74–97. MR 977489, DOI 10.1137/0520006
- L. Durlofsky and J. F. Brady, Analysis of the Brinkman equation as a model for flow in porous media, Phys. Fluids, 30 (1987), pp. 3329–3342.
- H.C. Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, Int. J. Numer. Methods Fluids, 22 (1998), pp. 755 – 770.
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- W. Hackbusch, Multi-grid Methods and Applications, Berlin, Heidelberg: Springer, 1985.
- Yu. Iliash, R. Tuomo, and J. Toivanen, Two iterative methods for solving the Stokes problem, Laboratory of Scientific Computing, University of Jyvaskyla, Report 2, 1993.
- Georgij M. Kobelkov and Maxim A. Olshanskii, Effective preconditioning of Uzawa type schemes for a generalized Stokes problem, Numer. Math. 86 (2000), no. 3, 443–470. MR 1785417, DOI 10.1007/s002110000160
- Maxim Larin and Arnold Reusken, A comparative study of efficient iterative solvers for generalized Stokes equations, Numer. Linear Algebra Appl. 15 (2008), no. 1, 13–34. MR 2388412, DOI 10.1002/nla.561
- Kent Andre Mardal, Xue-Cheng Tai, and Ragnar Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal. 40 (2002), no. 5, 1605–1631. MR 1950614, DOI 10.1137/S0036142901383910
- S. Manservisi, Numerical analysis of Vanka-type solvers for steady Stokes and Navier-Stokes flows, SIAM J. Numer. Anal. 44 (2006), no. 5, 2025–2056. MR 2263039, DOI 10.1137/060655407
- Kent-Andre Mardal and Ragnar Winther, Uniform preconditioners for the time dependent Stokes problem, Numer. Math. 98 (2004), no. 2, 305–327. MR 2092744, DOI 10.1007/s00211-004-0529-6
- M. A. Olshanskii and A. Reusken, On the convergence of a multigrid method for linear reaction-diffusion problems, Computing 65 (2000), no. 3, 193–202. MR 1810324, DOI 10.1007/s006070070006
- Maxim A. Olshanskii, Jörg Peters, and Arnold Reusken, Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, Numer. Math. 105 (2006), no. 1, 159–191. MR 2257388, DOI 10.1007/s00211-006-0031-4
- Torgeir Rusten, Panayot S. Vassilevski, and Ragnar Winther, Interior penalty preconditioners for mixed finite element approximations of elliptic problems, Math. Comp. 65 (1996), no. 214, 447–466. MR 1333325, DOI 10.1090/S0025-5718-96-00720-X
- V. V. Shaĭdurov, Mnogosetochnye metody konechnykh èlementov, “Nauka”, Moscow, 1989 (Russian). MR 1007306
- Joachim Schöberl and Walter Zulehner, On Schwarz-type smoothers for saddle point problems, Numer. Math. 95 (2003), no. 2, 377–399. MR 2001083, DOI 10.1007/s00211-002-0448-3
- David Silvester and Andrew Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners, SIAM J. Numer. Anal. 31 (1994), no. 5, 1352–1367. MR 1293519, DOI 10.1137/0731070
- Rob Stevenson, Nonconforming finite elements and the cascadic multi-grid method, Numer. Math. 91 (2002), no. 2, 351–387. MR 1900924, DOI 10.1007/s002110100344
- Zhanye Tong and Ahmed Sameh, On an iterative method for saddle point problems, Numer. Math. 79 (1998), no. 4, 643–646. MR 1635705, DOI 10.1007/s002110050356
- Stefan Turek, Efficient solvers for incompressible flow problems, Lecture Notes in Computational Science and Engineering, vol. 6, Springer-Verlag, Berlin, 1999. An algorithmic and computational approach; With 1 CD-ROM (“Virtual Album”: UNIX/LINUX, Windows, POWERMAC; “FEATFLOW 1.1”: UNIX/LINUX). MR 1691839, DOI 10.1007/978-3-642-58393-3
- S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J. Comput. Phys. 65 (1986), no. 1, 138–158. MR 848451, DOI 10.1016/0021-9991(86)90008-2
- R. Verfürth, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal. 21 (1984), no. 2, 264–271. MR 736330, DOI 10.1137/0721019
- P. Wesseling and C. W. Oosterlee, Geometric multigrid with applications to computational fluid dynamics, J. Comput. Appl. Math. 128 (2001), no. 1-2, 311–334. Numerical analysis 2000, Vol. VII, Partial differential equations. MR 1820879, DOI 10.1016/S0377-0427(00)00517-3
- Xiaoping Xie, Jinchao Xu, and Guangri Xue, Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math. 26 (2008), no. 3, 437–455. MR 2421892
- J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing 56 (1996), no. 3, 215–235 (English, with English and German summaries). International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994). MR 1393008, DOI 10.1007/BF02238513
- W. Zulehner, A class of smoothers for saddle point problems, Computing 65 (2000), no. 3, 227–246. MR 1810326, DOI 10.1007/s006070070008
Bibliographic Information
- Maxim A. Olshanskii
- Affiliation: Department of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, Moscow 119899, Russia
- MR Author ID: 343398
- Email: Maxim.Olshanskii@mtu-net.ru
- Received by editor(s): April 29, 2009
- Received by editor(s) in revised form: October 20, 2010
- Published electronically: May 23, 2011
- Additional Notes: The author was partially supported through the RFBR Grant 11-01-00767 and 09-01-00115
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 57-79
- MSC (2010): Primary 65N55, 65N30, 65N15, 65F10
- DOI: https://doi.org/10.1090/S0025-5718-2011-02494-4
- MathSciNet review: 2833487