
MATHEMATICS OF COMPUTATION
Volume 81, Number 277, January 2012, Pages 447–466
S 0025-5718(2011)02496-8
Article electronically published on June 23, 2011

THE MODIFIED LEVENBERG-MARQUARDT METHOD FOR

NONLINEAR EQUATIONS WITH CUBIC CONVERGENCE

JINYAN FAN

Abstract. We propose a modified Levenberg-Marquardt method for nonlin-
ear equations, in which not only a LM step but also an approximate LM step
are computed at every iteration. To ensure the global convergence of the new
method, a new kind of predicted reduction is introduced for the merit function
when using the trust region technique. The cubic convergence of the modified
LM method is proved under the local error bound condition which is weaker
than nonsingularity. Numerical results show that the new method is very
efficient and could save many calculations of the Jacobian.

1. Introduction

We consider the system of nonlinear equations

(1.1) F (x) = 0,

where F (x) : Rn → Rn is continuously differentiable. Due to the nonlinearity of
F (x), (1.1) may have no solutions. Throughout the paper, we assume that the
solution set of (1.1) denoted by X∗ is nonempty, and in all cases ‖ · ‖ refers to the
2-norm.

The Newton method is one of the best known methods for nonlinear equations.
At every iteration, it computes the trial step

(1.2) dNk = −J−1
k Fk,

where Fk = F (xk) and Jk = F ′(xk) is the Jacobian. If J(x) is Lipschitz continuous
and nonsingular at the solution, then the convergence of the Newton method is
quadratic [4]. However, when F (x) is complicated or when n is very large, the
computation of the Jacobian may be expensive. There are mainly two ways to
save the Jacobian calculations. One is to use an approximation of the Jacobian
which needs less computation. For example, Quasi-Newton methods are popular
methods for nonlinear equations and usually have superlinear convergence under
some suitable conditions. The other way is to make more use of the available
Jacobian Jk. For example, the following well-known modified Newton method
computes not only the Newton step

(1.3) dNk = −J−1
k Fk,
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but also the approximate Newton step

(1.4) dMN
k = −J−1

k F (yk) with yk = xk + dNk

at every iteration. The available Jk is used in (1.4) rather than J(yk), in other
words, which saves the Jacobian calculation. The convergence of the modified New-
ton method described above is cubic if J(x) is Lipschitz continuous and nonsingular
at the solution.

Though the Newton method and the modified Newton method enjoy the favor-
able property of fast convergence, dNk and dMN

k may be very large and not stable
when Jk is near singular. Moreover, when Jk is singular, dNk and dMN

k are not
defined. To overcome the difficulties caused by the possible singularity of Jk, the
Levenberg-Marquardt method [5, 6] computes the trial step by

(1.5) dLM
k = −(JT

k Jk + λkI)
−1JT

k Fk,

where the LM parameter λk ≥ 0 is updated from iteration to iteration. Obviously,
when Jk is nonsingular and λk = 0, then the LM step dLM

k is reduced to the
Newton step dNk . The LM method has the same quadratic convergence as the
Newton method if the Jacobian is Lipschitz continuous and nonsingular at the
solution.

However, the condition on the nonsingularity of the Jacobian is too strong. Re-
cently, under the local error bound condition which is weaker than nonsingular-
ity, Yamashita and Fukushima [14] showed that if the LM parameter is chosen as
λk = ‖Fk‖2, then the LM method preserves the quadratic convergence under the
local error bound condition. Fan and Yuan [3] chose λk = ‖Fk‖δ with δ ∈ [1, 2]
and proved that the LM method still achieves the quadratic convergence under the
same conditions. More general choices of the LM parameter have been given in [2].

Inspired by the modified Newton method, we present the modified Levenberg-
Marquardt method in this paper. At every iteration, the modified LM method first
solves the linear equations

(1.6) (JT
k Jk + λkI)d = −JT

k Fk with λk = μk‖Fk‖δ, δ ∈ [1, 2]

to obtain the LM step dk, where μk > 0 is updated from iteration to iteration, then
solves the linear equations

(1.7) (JT
k Jk + λkI)d = −JT

k F (yk) with yk = xk + dk

to obtain the approximate LM step d̂k. We use (JT
k Jk + μk‖Fk‖δI) instead of

(J(yk)
TJ(yk) + μk+1‖F (yk)‖δI) in (1.7), which does not involve the calculation of

J(yk). Since the decomposition of JT
k Jk + λkI is available after solving (1.6), only

the function value F (yk) is needed to solve (1.7). So the cost of obtaining d̂k will
be inexpensive.

We could use line search or the trust region technique to obtain the global
convergence of the modified LM method. Since dk is a decent direction of the

merit function ‖F (x)‖2 at xk but dk + d̂k may not be, we prefer to use the trust
region technique. It is worth pointing out that the usual predicted reduction

‖Fk‖2−‖Fk+Jkdk‖2 is always nonnegative [1], however, ‖Fk‖2−‖Fk+Jk(dk+d̂k)‖2
may not have such a desirable property. To overcome this difficulty, we introduce
a new kind of predicted reduction, which is proven to be always nonnegative and
of crucial importance for the global convergence of the modified LM method.
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As the modified Newton method has cubic convergence, it is interesting to inves-
tigate whether the modified LM method could also achieve the cubic convergence
under the local error bound condition which is weaker than nonsingularity. Thus,

we need to explore not only the LM step dk but also the approximate LM step d̂k.

While dk preserves the attractive properties as presented in [3], d̂k depends on the
properties of JT

k F (yk) which contribute to the cubic convergence of the modified
LM method.

The paper is organized as follows: In Section 2, we first introduce the new def-
inition of the predicted reduction for the merit function, then propose a modified
LM algorithm for (1.1) by using the trust region technique. We show that the new
algorithm preserves the same global convergence as the existing LM algorithms

under some suitable conditions. In Section 3, both dk and d̂k are deeply investi-
gated. We prove that the modified LM algorithm has the same cubic convergence
as the modified Newton method under the local error bound condition, which is
weaker than nonsingularity. Finally, some numerical results of the new algorithm
are reported in Section 4.

2. The modified LM algorithm and its global convergence

2.1. New definition of the predicted reduction and the algorithm. We take

(2.1) Φ(x) = ‖F (x)‖2

as the merit function for (1.1). As described in Section 1, the modified LM method
not only computes the LM step dk by (1.6) but also computes the approximate LM

step d̂k by (1.7) at every iteration.
Define the actual reduction of Φ(x) at the k-th iteration as

Aredk = ‖Fk‖2 − ‖F (xk + dk + d̂k)‖2.

We cannot define ‖Fk‖2 −‖Fk + Jk(dk + d̂k)‖2 as the predicted reduction as usual,
because it cannot be proven to be nonnegative, which is required for the global
convergence in the trust region method. We need to develop a new kind of predicted
reduction.

Note that the LM step dk is the minimizer of the convex minimization problem:

(2.2) min
d∈Rn

‖Fk + Jkd‖2 + λk‖d‖2 � ϕk,1(d).

If we let

(2.3) Δk,1 = ‖dk‖ = ‖ − (JT
k Jk + λkI)

−1JT
k Fk‖,

then it can be verified that dk is also a solution of the following trust region problem:

(2.4) min
d∈Rn

‖Fk + Jkd‖2 s.t. ‖d‖ ≤ Δk,1.

By the famous result given by Powell in [10], we know that

(2.5) ‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ ‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}
.

Similarly to dk, d̂k is not only the minimizer of the problem

(2.6) min
d∈Rn

‖F (yk) + Jkd‖2 + λk‖d‖2 � ϕk,2(d),
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but also the solution of the trust region problem

(2.7) min
d∈Rn

‖F (yk) + Jkd‖2 s.t. ‖d‖ ≤ Δk,2,

where

(2.8) Δk,2 = ‖d̂k‖ = ‖ − (JT
k Jk + λkI)

−1JT
k F (yk)‖.

So we also have

(2.9) ‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2 ≥ ‖JT
k F (yk)‖min

{
‖d̂k‖,

‖JT
k F (yk)‖
‖JT

k Jk‖

}
.

Now based on the inequalities (2.5) and (2.9), it is reasonable for us to define
the new predicted reduction as

(2.10) Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2,

which satisfies

Predk ≥ ‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}

+ ‖JT
k F (yk)‖min

{
‖d̂k‖,

‖JT
k F (yk)‖
‖JT

k Jk‖

}
,

(2.11)

and it is always nonnegative. The ratio of the actual reduction to the predicted
reduction

rk =
Aredk
Predk

will be used in deciding whether to accept the trial step and how to adjust the LM
parameter.

We present the modified LM algorithm as follows.

Algorithm 2.1 (Modified LM algorithm for nonlinear equations).

Step 1. Given x1 ∈ Rn, μ1 > m > 0, 0 < p0 ≤ p1 ≤ p2 < 1, 1 ≤ δ ≤ 2, k := 1.
Step 2. If ‖JT

k Fk‖ = 0, then stop. Solve

(2.12) (JT
k Jk + λkI)d = −JT

k Fk with λk = μk‖Fk‖δ

to obtain dk and set

yk = xk + dk.

Solve

(2.13) (JT
k Jk + λkI)d = −JT

k F (yk)

to obtain d̂k and set

sk = dk + d̂k.

Step 3. Compute rk = Aredk/Predk. Set

(2.14) xk+1 =

{
xk + sk, if rk ≥ p0,
xk, otherwise.
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Step 4. Choose μk+1 as

(2.15) μk+1 =

⎧⎪⎨
⎪⎩

4μk, if rk < p1,
μk, if rk ∈ [p1, p2],

max{μk

4
,m}, if rk > p2.

Set k = k + 1 and go to Step 2.

In fact, our modified LM algorithm can be regarded as a trust region algorithm
in some sense. As we know, the trust region algorithm updates the trust region
directly at every iteration, while our modified LM algorithm updates the parameter
μk, which in turn updates the values Δk,1 and Δk,2 by (2.3) and (2.8) implicitly.
Many other papers also discuss the Levenberg-Marquardt method and the trust
region method; please see [7, 8, 13, 15, 16] and the references therein for more
details.

The main difference of Algorithm 2.1 from the general LM algorithm [1] is that

an approximate LM step d̂k is computed at every iteration. d̂k may not be as
good as −(J(yk)

TJ(yk) + μk+1‖F (yk)‖δI)−1J(yk)
TF (yk), but it does not need to

calculate J(yk). Another difference is that a new kind of predicted reduction is
used to guarantee the actual reduction to be always nonnegative.

We require μk to be no less than a positive constant m to prevent the steps from
being too large when the sequence is near the solution.

2.2. Global convergence of Algorithm 2.1. To study the global convergence
of Algorithm 2.1, we make the following assumptions.

Assumption 2.2. F (x) is continuously differentiable, and both F (x) and its Ja-
cobian J(x) are Lipschitz continuous, i.e., there exist positive constants L1 and L2

such that

(2.16) ‖J(y)− J(x)‖ ≤ L1‖y − x‖, ∀x, y ∈ Rn

and

(2.17) ‖F (y)− F (x)‖ ≤ L2‖y − x‖, ∀x, y ∈ Rn.

By the Lipschitzness of the Jacobian, we have

(2.18) ‖F (y)− F (x)− J(x)(y − x)‖ ≤ L1‖y − x‖2, ∀x, y ∈ Rn.

Next we show that the sequence generated by Algorithm 2.1 converges to the
stationary point of the merit function.

Theorem 2.3. Under the conditions of Assumption 2.2, Algorithm 2.1 terminates
in finite iterations or satisfies

(2.19) lim
k→∞

‖JT
k Fk‖ = 0.

Proof. We prove by contradiction. Suppose the theorem is not true, then there
exist a positive τ and infinitely many k such that

(2.20) ‖JT
k Fk‖ ≥ τ.

Let T1, T2 be the sets of the indices as follows:

T1 = {k | ‖JT
k Fk‖ ≥ τ},

T2 = {k | ‖JT
k Fk‖ ≥ τ

2
and xk+1 �= xk}.
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Then T1 is an infinite set. In the following, we will derive the contradictions whether
T2 is finite or infinite.

Case (I). T2 is finite.

It follows from the definition of T2 that the set

T3 = {k | ‖JT
k Fk‖ ≥ τ and xk+1 �= xk}

is also finite. Let k̃ be the largest index of T3. Then we know that xk+1 = xk holds

for all k ∈ {k > k̃ | k ∈ T1}. Define the indices set

T4 = {k > k̃ | ‖JT
k Fk‖ ≥ τ and xk+1 = xk}.

Suppose k ∈ T4. It is easy to see that ‖JT
k+1Fk+1‖ ≥ τ . Moreover, we have

xk+2 = xk+1. Otherwise, if xk+2 �= xk+1, then k + 1 ∈ T3, which contradicts the

fact that k̃ is the largest index of T3. Hence, we have k+1 ∈ T4. By induction, we
know that ‖JT

k Fk‖ ≥ τ and xk+1 = xk hold for all k > k̃.

It now follows from Step 3 of Algorithm 2.1 that rk < p0 for all k > k̃, which
implies

(2.21) μk → +∞ and λk → +∞

due to (2.12), (2.15) and xk+1 = xk for all k > k̃. Hence we have

(2.22) dk → 0.

Moreover, it follows from (2.7), (2.18), (2.21) and the definition of d̂k that

‖d̂k‖ = ‖ − (JT
k Jk + λkI)

−1JT
k F (yk)‖

≤ ‖(JT
k Jk + λkI)

−1JT
k Fk‖+ ‖(JT

k Jk + λkI)
−1JT

k Jkdk‖
+ L1‖dk‖2‖(JT

k Jk + λkI)
−1JT

k ‖

≤ ‖dk‖+ ‖dk‖+
L1L2

λk
‖dk‖2

≤ c̄‖dk‖

(2.23)

holds for all sufficiently large k, where c̄ is a positive constant. Therefore, we have

(2.24) ‖sk‖ = ‖dk + d̂k‖ ≤ (1 + c̄)‖dk‖.
Furthermore, it follows from (2.11), (2.17), (2.20) and (2.24) that

|rk − 1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣

≤

∣∣∣∣∣∣
‖F (xk+dk+d̂k)‖2−‖Fk+Jkdk‖2+‖F (yk)‖2−‖F (yk)+Jkd̂k‖2

‖JT
k Fk‖min

{
‖dk‖,‖J

T
k Fk‖

‖JT
k Jk‖

}
+‖JT

k F (yk)‖min
{
‖d̂k‖, ‖JT

k F (yk)‖
‖JT

k Jk‖

}
∣∣∣∣∣∣

≤ ‖Fk+Jksk‖O(‖sk‖2+‖dk‖2)+O(‖sk‖4+‖dk‖4) + ‖Fk+Jkdk‖O(‖dk‖2)
‖JT

k Fk‖min
{
‖dk‖, ‖JT

k Fk‖
‖JT

k Jk‖

}

≤ ‖Fk‖O(‖dk‖2) + ‖Jkd̂k‖O(‖dk‖2)
‖dk‖

→ 0,

(2.25)
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which implies that rk → 1. In view of the updating rule of μk, we know that there
exists a positive constant m̃ > m such that μk < m̃ holds for all sufficiently large
k, which is a contradiction to (2.21). Hence the supposition (2.20) cannot be true
while T2 is finite.

Case (II). T2 is infinite.

It follows from (2.11) and (2.17) that

‖F1‖2 ≥
∑
k∈T2

(‖Fk‖2 − ‖Fk+1‖2)

≥
∑
k∈T2

p0Predk

≥
∑
k∈T2

p0

{
‖JT

k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}

+‖JT
k F (yk)‖min

{
‖d̂k‖,

‖JT
k F (yk)‖
‖JT

k Jk‖

}}

≥
∑
k∈T2

p0τ

2
min

{
‖dk‖,

τ

2L2
2

}
,

(2.26)

which implies

(2.27) lim
k→∞,k∈T2

dk = 0.

Then the definition of dk gives

(2.28) λk → +∞, k ∈ T2.

Similar to (2.23), there exists a positive c̃ such that

(2.29) ‖d̂k‖ ≤ c̃‖dk‖
holds for all sufficiently large k ∈ T2. Thus we have

(2.30) ‖sk‖ = ‖dk + d̂k‖ ≤ (1 + c̃)‖dk‖.
Hence, we obtain from (2.26) that

(2.31)
∑
k∈T2

‖sk‖ =
∑
k∈T2

‖dk + d̂k‖ < +∞.

Furthermore, it follows from (2.16) and (2.17) that

∑
k∈T2

∣∣∣∣‖JT
k Fk‖ − ‖JT

k+1Fk+1‖
∣∣∣∣ < +∞.

Since (2.20) holds for infinitely many k, there exists a large k̂ such that ‖JT
k̂
Fk̂‖ ≥ τ

and ∑
k∈T2,k≥k̂

∣∣∣∣‖JT
k Fk‖ − ‖JT

k+1Fk+1‖
∣∣∣∣ < τ

2
.

By induction, we see that ‖JT
k Fk‖ ≥ τ/2 holds for all k ≥ k̂. Then we deduce from

(2.26)–(2.29) that limk→∞ xk exists and

(2.32) dk → 0, d̂k → 0.
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It follows from the definition of dk that

(2.33) μk → +∞.

Next, by the same analysis as (2.25) we know that

rk → 1.

Thus, there exists a positive constant m̄ > m such that μk < m̄ holds for all
sufficiently large k, which is a contradiction to (2.33). Therefore, the supposition
(2.20) cannot be true when T2 is infinite.

Summarizing the analyses above, we know that (2.19) holds true. �

Actually, if we let

(2.34) P̃ redk = ‖Fk‖2 − ‖Fk + Jk(dk + d̂k)‖2

as usual, we have

P̃ redk−Predk = ‖Fk+Jkdk‖2−‖F (yk)‖2+‖F (yk)+Jkd̂k‖2−‖Fk+Jk(dk+d̂k)‖2

= 2d̂Tk J
T
k (F (yk)− Fk − Jkdk),

which means

(2.35) P̃ redk = Predk + ‖d̂k‖O(‖dk‖2) = O(Predk).

So P̃ redk can be used instead of Predk while computing.

3. Cubic convergence of the modified LM algorithm

We assume that the sequence {xk} generated by Algorithm 2.1 converges to the
solution set X∗ of (1.1) and lies in some neighbourhood of x∗ ∈ X∗. We first give

the relations among the LM step dk, the approximate step d̂k and the distance from
the current iterate xk to the solution set. Then we show that the LM parameter is
bounded above which is very important to the derivation of the cubic convergence
of the algorithm.

The local convergence theory requires the following assumptions.

Assumption 3.1. (a) F (x) is continuously differentiable, and ‖F (x)‖ provides a
local error bound on some neighbourhood of x∗ ∈ X∗, i.e., there exist positive
constants c1 > 0 and b1 < 1 such that

(3.1) ‖F (x)‖ ≥ c1dist(x,X
∗), ∀x ∈ N(x∗, b1) = {x | ‖x− x∗‖ ≤ b1}.

(b) The Jacobian J(x) is Lipschitz continuous on N(x∗, b1), i.e., there exists a
positive constant L1 such that

(3.2) ‖J(y)− J(x)‖ ≤ L1‖y − x‖, ∀x, y ∈ N(x∗, b1).

Note that, if J(x) is nonsingular at a solution of (1.1), then the solution is an
isolated one, so ‖F (x)‖ provides a local error bound on its neighborhood. However,
the converse is not necessarily true, for examples please see [14]. Hence, the local
error bound condition is weaker than nonsingularity.

Due to the Lipschitzness of the Jacobian, we have

(3.3) ‖F (y)− F (x)− J(x)(y − x)‖ ≤ L1‖y − x‖2, ∀x, y ∈ N(x∗, b1);

moreover, there exists a constant L2 > 0 such that

(3.4) ‖F (y)− F (x)‖ ≤ L2‖y − x‖, ∀x, y ∈ N(x∗, b1).
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In the following, we denote x̄k the vector in X∗ that satisfies

‖x̄k − xk‖ = dist(xk, X
∗).

3.1. Properties of the trial step sk. In this subsection, we use the singular value

decomposition technique to investigate the properties of dk, d̂k, and hence sk.
Suppose the SVD of J(x̄k) is

J̄k = ŪkΣ̄kV̄
T
k

= (Ūk,1, Ūk,2)

(
Σ̄k,1

0

)(
V̄ T
k,1

V̄ T
k,2

)

= Ūk,1Σ̄k,1V̄
T
k,1,

where Σ̄k,1 = diag(σ̄k,1, · · · , σ̄k,r) with σ̄k,1 ≥ σ̄k,2 ≥ · · · ≥ σ̄k,r > 0, and corre-
spondingly the SVD of Jk is

Jk = UkΣkV
T
k

= (Uk,1, Uk,2, Uk,3)

⎛
⎝ Σk,1

Σk,2

0

⎞
⎠

⎛
⎝ V T

k,1

V T
k,2

V T
k,3

⎞
⎠

= Uk,1Σk,1V
T
k,1 + Uk,2Σk,2V

T
k,2,

where Σk,1 = diag(σk,1, · · · , σk,r) with σk,1 ≥ σk,2 ≥ · · · ≥ σk,r > 0, and Σk,2 =
diag(σk,r+1, · · · , σk,r+q) with σk,r ≥ σk,r+1 ≥ σk,r+2 ≥ · · · ≥ σk,r+q > 0. In
the following, if the context is clear, we neglect the subscription k in Σk,i and
Uk,i, Vk,i(i = 1, 2, 3), and write Jk as

Jk = U1Σ1V
T
1 + U2Σ2V

T
2 .

The following lemma gives the relationship between the trial step sk and the
distance from xk to the solution set.

Lemma 3.2. Under the conditions of Assumption 3.1, if xk, yk ∈ N(x∗, b1/2),
then there exists a constant c2 > 0 such that

(3.5) ‖sk‖ ≤ c2 dist(xk, X
∗)

holds for all sufficiently large k.

Proof. Since xk ∈ N(x∗, b1/2), we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ b1,

which implies that x̄k ∈ N(x∗, b1). It follows from (2.15) and (3.1) that the LM
parameter λk satisfies

(3.6) λk = μk‖Fk‖δ ≥ mcδ1‖x̄k − xk‖δ.
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As dk is a minimizer of ϕk,1(d), we have from (3.3) that

‖dk‖2 ≤ ϕk,1(dk)

λk

≤ ϕk,1(x̄k − xk)

λk

=
‖Fk + Jk(x̄k − xk)‖2

λk
+ ‖x̄k − xk‖2

≤ L2
1c

−δ
1 m−1‖x̄k − xk‖4−δ + ‖x̄k − xk‖2,

which together with 1 ≤ δ ≤ 2 gives

(3.7) ‖dk‖ ≤ c̃2‖x̄k − xk‖,

where c̃2 =
√
L2
1c

−δ
1 m−1 + 1 is a positive constant.

It follows from (3.3) and the definition of d̂k that

‖d̂k‖ = ‖ − (JT
k Jk + λkI)

−1JT
k F (yk)‖

≤ ‖(JT
k Jk + λkI)

−1JT
k Fk‖+ ‖(JT

k Jk + λkI)
−1JT

k Jkdk‖
+ L1‖dk‖2‖(JT

k Jk + λkI)
−1JT

k ‖
≤ 2‖dk‖+ L1‖dk‖2‖(JT

k Jk + λkI)
−1JT

k ‖.

(3.8)

Using the SVD of Jk, we have

‖(JT
k Jk + λkI)

−1JT
k ‖

=

∥∥∥∥∥∥(V1, V2, V3)

⎛
⎝ (Σ2

1 + λkI)
−1Σ1

(Σ2
2 + λkI)

−1Σ2

0

⎞
⎠

⎛
⎝ UT

1

UT
2

UT
3

⎞
⎠
∥∥∥∥∥∥

≤

∥∥∥∥∥∥
⎛
⎝ (Σ2

1 + λkI)
−1Σ1

(Σ2
2 + λkI)

−1Σ2

0

⎞
⎠
∥∥∥∥∥∥

≤
∥∥∥∥
(

Σ−1
1

λ−1
k Σ2

)∥∥∥∥ .

(3.9)

By the theory of matrix perturbation [12] and the Lipschitzness of Jk, we have

‖diag(Σ1 − Σ̄1,Σ2, 0)‖ ≤ ‖Jk − J̄k‖ ≤ L1‖x̄k − xk‖,

which yields

(3.10) ‖Σ1 − Σ̄1‖ ≤ L1‖x̄k − xk‖ and ‖Σ2‖ ≤ L1‖x̄k − xk‖.

Since {xk} converges to the solution set X∗, we assume that L1‖x̄k−xk‖ ≤ σ̄r/2
holds for all sufficiently large k. Then it follows from (3.10) that

(3.11) ‖Σ−1
1 ‖ ≤ 1

σ̄r − L1‖x̄k − xk‖
≤ 2

σ̄r
;

moreover, we have from (3.6) that

(3.12) ‖λ−1
k Σ2‖ =

‖Σ2‖
μk‖Fk‖δ

≤ L1

mcδ
‖x̄k − xk‖1−δ.
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The above inequalities together with (3.8) and (3.9) imply that there exists a pos-
itive c̄2 such that

(3.13) ‖d̂k‖ ≤ 2‖dk‖+ c̄2‖dk‖2‖x̄k − xk‖1−δ

holds for all sufficiently large k. Hence we obtain from (3.7) that

(3.14) ‖sk‖ = ‖dk + d̂k‖ ≤ ‖dk‖+ ‖d̂k‖ ≤ c2‖x̄k − xk‖

for some c2 > 0. The proof is completed. �

3.2. Boundedness of the LM parameter. The updating rule of {μk} indicates
that {μk} is bounded below. Next we show that μk is also bounded above.

Lemma 3.3. Under the conditions of Assumption 3.1, if xk, yk ∈ N(x∗, b1/2),
then there exists a positive constant M > m such that

(3.15) μk ≤ M

holds for all sufficiently large k.

Proof. First we prove that for all sufficiently large k,

‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ c̃3‖Fk‖min{‖dk‖, ‖x̄k − xk‖},(3.16)

‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2 ≥ ĉ3‖F (yk)‖min{‖d̂k‖, ‖ȳk − yk‖},(3.17)

where c̃3, ĉ3 are some positive constants.
To prove (3.16), we consider two cases. If ‖x̄k − xk‖ ≤ ‖dk‖, by (3.1), (3.3) and

the fact that dk is the solution of (2.4), we have

‖Fk‖ − ‖Fk + Jkdk‖ ≥ ‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖
≥ c1‖x̄k − xk‖+O(‖x̄k − xk‖2)
≥ c̃3‖x̄k − xk‖

(3.18)

for some c̃3 > 0. In the other case that ‖x̄k − xk‖ > ‖dk‖, we have

‖Fk‖ − ‖Fk + Jkdk‖ ≥ ‖Fk‖ − ‖Fk +
‖dk‖

‖x̄k − xk‖
Jk(x̄k − xk)‖

≥ ‖dk‖
‖x̄k − xk‖

(‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖)

≥ ‖dk‖
‖x̄k − xk‖

· c̃3‖x̄k − xk‖

≥ c̃3‖dk‖.

(3.19)
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Both (3.18) and (3.19) indicate that

‖Fk‖2 − ‖Fk + Jkdk‖2 = (‖Fk‖+ ‖Fk + Jkdk‖)(‖Fk‖ − ‖Fk + Jkdk‖)
≥ c̃3‖Fk‖min{‖dk‖, ‖x̄k − xk‖}.

Similarly, if ‖ȳk − yk‖ ≤ ‖d̂k‖, then by (3.1)–(3.3) and the fact that d̂k is the
solution of (2.7), we have

‖F (yk)‖ − ‖F (yk) + Jkd̂k‖
≥ ‖F (yk)‖ − ‖F (yk) + Jk(ȳk − yk)‖
≥ ‖F (yk)‖−‖F (yk)+J(yk)(ȳk−yk)‖−‖(Jk−J(yk))(ȳk−yk)‖
≥ c1‖ȳk − yk‖+O(‖ȳk − yk‖2) +O(‖dk‖‖ȳk − yk‖)
≥ ĉ3‖ȳk − yk‖

(3.20)

for some ĉ3 > 0. In the other case where ‖ȳk − yk‖ > ‖d̂k‖, we have

‖F (yk)‖ − ‖F (yk) + Jkd̂k‖

≥ ‖F (yk)‖ − ‖F (yk) +
‖d̂k‖

‖ȳk − yk‖
Jk(ȳk − yk)‖

≥ ‖d̂k‖
‖ȳk − yk‖

(‖F (yk)‖ − ‖F (yk) + Jk(ȳk − yk)‖)

≥ ‖d̂k‖
‖ȳk − yk‖

· ĉ3‖ȳk − yk‖

≥ ĉ3‖d̂k‖.

(3.21)

Combining (3.20) and (3.21), we obtain

‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2

= (‖F (yk)‖+ ‖F (yk) + Jkd̂k‖)(‖F (yk)‖ − ‖F (yk) + Jkd̂k‖)
≥ ĉ3‖F (yk)‖min{‖ȳk − yk‖, ‖d̂k‖}.

Hence it follows from (3.3), (3.7), (3.16) and (3.17) that

|rk−1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣
=

∣∣∣∣∣
‖F (xk+dk+d̂k)‖2−‖F (yk)+Jkd̂k‖2 +‖F (yk)‖2−‖Fk+Jkdk‖2

Predk

∣∣∣∣∣
≤ ‖Fk+Jksk‖O(‖sk‖2+‖dk‖2)+O(‖sk‖4+‖dk‖4)+‖Fk+Jkdk‖O(‖dk‖2)

c̃3‖Fk‖min{‖dk‖, ‖x̄k−xk‖}+ĉ3‖F (yk)‖min{‖ȳk−yk‖, ‖d̂k‖}

≤ ‖Fk+Jksk‖O(‖sk‖2+‖dk‖2)+O(‖sk‖4+‖dk‖4)+‖Fk+Jkdk‖O(‖dk‖2)
‖x̄k − xk‖‖dk‖

.

(3.22)
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In view of (3.4), (3.7) and (3.13), we see that

‖Fk + Jkdk‖ ≤ ‖Fk‖ ≤ O(‖x̄k − xk‖),(3.23)

‖Fk + Jksk‖ ≤ ‖Fk + Jkdk‖+ ‖Jkd̂k‖
≤ ‖Fk‖+ L2(2‖dk‖+ c̄2‖dk‖2‖x̄k − xk‖1−δ)(3.24)

≤ O(‖x̄k − xk‖)
and

‖sk‖2 = ‖dk + d̂k‖2 ≤ ‖dk‖2 + 2‖dk‖‖d̂k‖+ ‖d̂k‖2

≤ ‖dk‖2 + 2‖dk‖(2‖dk‖+ c̄2‖dk‖2‖x̄k − xk‖1−δ)

+ (2‖dk‖+ c̄2‖dk‖2‖x̄k − xk‖1−δ)2(3.25)

≤ 9‖dk‖2 +O(‖dk‖3‖x̄k − xk‖1−δ) +O(‖dk‖4‖x̄k − xk‖2−2δ).

It then follows from (3.7) that

O(‖dk‖2)
‖x̄k − xk‖‖dk‖

≤ O(1)

and
O(‖sk‖2)

‖x̄k − xk‖‖dk‖
≤ O(1).

The two inequalities above together with (3.22)–(3.24) imply that

rk → 1.

Hence there exists a positive constant M > m such that μk ≤ M holds for all
sufficiently large k. The proof is completed. �

Lemma 3.3 together with (3.4) indicates that the LM parameter satisfies

(3.26) λk = μk‖Fk‖δ ≤ Lδ
2M‖x̄k − xk‖δ,

which means the LM parameter is bounded.
In the remainder of this section, we will show that {xk} converges to some

solution of the nonlinear equations (1.1) cubically.

3.3. Cubic convergence of Algorithm 2.1. By the SVD of Jk, we compute

dk = −V1(Σ
2
1 + λkI)

−1Σ1U
T
1 Fk − V2(Σ

2
2 + λkI)

−1Σ2U
T
2 Fk,(3.27)

d̂k = −V1(Σ
2
1 + λkI)

−1Σ1U
T
1 F (yk)− V2(Σ

2
2 + λkI)

−1Σ2U
T
2 F (yk),(3.28)

and

Fk + Jkdk(3.29)

= Fk−U1Σ1(Σ
2
1+λkI)

−1Σ1U
T
1 Fk−U2Σ2(Σ

2
2+λkI)

−1Σ2U
T
2 Fk

= λkU1(Σ
2
1+λkI)

−1UT
1 Fk+λkU2(Σ

2
2+λkI)

−1UT
2 Fk+U3U

T
3 Fk,

F (yk) + Jkd̂k(3.30)

= F (yk)−U1Σ1(Σ
2
1+λkI)

−1Σ1U
T
1 F (yk)−U2Σ2(Σ

2
2+λkI)

−1Σ2U
T
2 F (yk)

= λkU1(Σ
2
1+λkI)

−1UT
1 F (yk)+λkU2(Σ

2
2+λkI)

−1UT
2 F (yk)+U3U

T
3 F (yk).

In order to obtain the cubic convergence rate of the algorithm, not only a better

estimation of d̂k than (3.13) is required but also the estimations of ‖Fk + Jkdk‖
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and ‖F (yk) + Jkd̂k‖ are required. The following two lemmas give the estimations
of ‖UT

1 Fk‖, ‖UT
2 Fk‖, ‖UT

3 Fk‖ as well as ‖UT
1 F (yk)‖, ‖UT

2 F (yk)‖, ‖UT
3 F (yk)‖, which

are involved in (3.29) and (3.30).

Lemma 3.4. Under the conditions of Assumption 3.1, if xk ∈ N(x∗, b1/2), then
we have

(a) ‖U1U
T
1 Fk‖ ≤ L2‖x̄k − xk‖;

(b) ‖U2U
T
2 Fk‖ ≤ 2L1‖x̄k − xk‖2;

(c) ‖U3U
T
3 Fk‖ ≤ L1‖x̄k − xk‖2,

where L1, L2 are given in (3.2) and (3.4), respectively.

Proof. Result (a) follows immediately from (3.4).
Let s̄k = −J+

k Fk, where J+
k is the pseudo-inverse of Jk. It is easy to see that s̄k

is the least squares solution of min ‖Fk + Jks‖, so we have from (3.3) that

‖U3U
T
3 Fk‖ = ‖Fk + Jks̄k‖ ≤ ‖Fk + Jk(x̄k − xk)‖ ≤ L1‖x̄k − xk‖2.

Let J̃k = U1Σ1V
T
1 and s̃k = −J̃+

k Fk. Since s̃k is the least squares solution of

min ‖Fk + J̃ks‖, it follows from (3.3) and (3.10) that

‖(U2U
T
2 + U3U

T
3 )Fk‖ = ‖Fk + J̃ks̃k‖

≤ ‖Fk + J̃k(x̄k − xk)‖
≤ ‖Fk + Jk(x̄k − xk)‖+ ‖(J̃k − Jk)(x̄k − xk)‖
≤ L1‖x̄k − xk‖2 + ‖U2Σ2V

T
2 (x̄k − xk)‖

≤ L1‖x̄k − xk‖2 + L1‖x̄k − xk‖‖x̄k − xk‖
≤ 2L1‖x̄k − xk‖2.

Due to the orthogonality of U2 and U3, we get result (b). �
Lemma 3.5. Under the conditions of Assumption 3.1, if xk, yk ∈ N(x∗, b1/2),
then we have

(a) ‖U1U
T
1 F (yk)‖ ≤ c4‖x̄k − xk‖2;

(b) ‖U2U
T
2 F (yk)‖ ≤ c5‖xk − x̄k‖3;

(c) ‖U3U
T
3 F (yk)‖ ≤ c6‖x̄k − xk‖3,

where c4, c5, c6 are positive constants.

Proof. It follows from (3.11), (3.26), (3.29) and Lemma 3.4 that

‖Fk + Jkdk‖ ≤ 4L1+δ
2 M

σ̄2
r

‖x̄k − xk‖1+δ + (2L1 + L1)‖x̄k − xk‖2

≤ (
4L1+δ

2 M

σ̄2
r

+ 3L1)‖x̄k − xk‖2,

which together with (3.3) and (3.7) imply that

‖F (yk)‖ = ‖F (xk + dk)‖
≤ ‖Fk + Jkdk‖+ L1‖dk‖2

≤ (
4L1+δ

2 M

σ̄2
r

+ 3L1 + L1c̃
2
2)‖x̄k − xk‖2

= c4‖x̄k − xk‖2,
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where c4 = 4L1+δ
2 Mσ̄−2

r + 3L1 + L1c̃
2
2. So we have

(3.31) ‖U1U
T
1 F (yk)‖ ≤ ‖F (yk)‖ ≤ c4‖x̄k − xk‖2.

Thus the local error bound condition yields

(3.32) ‖ȳk − yk‖ ≤ c−1
1 ‖F (yk)‖ ≤ c7‖x̄k − xk‖2,

where c7 = c−1
1 c4.

Let p̄k = −J+
k F (yk), then p̄k is the least squares solution of min ‖F (yk) + Jkp‖.

By simple calculations, we deduce from (3.2), (3.3), (3.7) and (3.32) that

‖U3U
T
3 F (yk)‖ = ‖F (yk) + Jkp̄k‖

≤ ‖F (yk) + Jk(ȳk − yk)‖
≤ ‖F (yk) + J(yk)(ȳk − yk)‖+ ‖(Jk − J(yk))(ȳk − yk)‖
≤ L1‖ȳk − yk‖2 + L1‖dk‖‖ȳk − yk‖
≤ L1c

2
7‖x̄k − xk‖4 + L1c̃2c7‖x̄k − xk‖3

≤ c6‖x̄k − xk‖3,

(3.33)

where c6 = L1c
2
7 + L1c̃2c7.

Let J̃k = U1Σ1V
T
1 and p̃k = −J̃+

k F (yk). Since p̃k is the least squares solution of

min ‖F (yk) + J̃kp‖, we deduce from (3.2), (3.3), (3.7) (3.10) and (3.32) that

‖(U2U
T
2 + U3U

T
3 )F (yk)‖

= ‖F (yk) + J̃kp̃k‖ ≤ ‖F (yk) + J̃k(ȳk − yk)‖
≤ ‖F (yk) + J(yk)(ȳk − yk)‖+ ‖(J̃k − J(yk))(ȳk − yk)‖
≤ L1‖ȳk − yk‖2 + ‖(Jk − J(yk)− U2Σ2V

T
2 )(ȳk − yk)‖

≤ L1‖ȳk − yk‖2 + ‖(Jk − J(yk))(ȳk − yk)‖+ ‖U2Σ2V
T
2 (ȳk − yk)‖

≤ L1‖ȳk − yk‖2 + L1‖dk‖‖ȳk − yk‖+ L1‖x̄k − xk‖‖ȳk − yk‖
≤ L1c

2
7‖x̄k − xk‖4 + L1c̃2c7‖x̄k − xk‖3 + L1c7‖x̄k − xk‖3.

(3.34)

Combining (3.33) and (3.34), we know there exists a positive c5 > 0 such that

‖U2U
T
2 F (yk)‖ ≤ c5‖x̄k − xk‖3

due to the orthogonality of U2 to U3. The proof is completed. �

Based on the results obtained above, we can show that {xk} converges to some
solution of (1.1) cubically.

It follows from (3.6), (3.10), (3.11), (3.28), (3.30) and Lemma 3.5 that

‖d̂k‖ = ‖ − V1(Σ
2
1 + λkI)

−1Σ1U
T
1 F (yk)− V2(Σ

2
2 + λkI)

−1Σ2U
T
2 F (yk)‖

≤ ‖Σ−1
1 ‖‖UT

1 F (yk)‖+ ‖λ−1
k Σ2‖‖UT

2 F (yk)‖

≤ 2c4
σ̄r

‖x̄k − xk‖2 +
L1c5
mcδ1

‖x̄k − xk‖4−δ

≤ c8‖x̄k − xk‖2,

(3.35)
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where c8 = 2c4σ̄
−1
r + L1c

−δ
1 c5m

−1, and

‖F (yk)+Jkd̂k‖
= ‖λkU1(Σ

2
1+λkI)

−1UT
1 F (yk)+λkU2(Σ

2
2+λkI)

−1UT
2 F (yk)+U3U

T
3 F (yk)‖

≤ λk‖Σ−2
1 ‖‖UT

1 F (yk)‖+‖UT
2 F (yk)‖+‖UT

3 F (yk)‖

≤ 4Lδ
2Mc4
σ̄2
r

‖x̄k − xk‖2+δ + (c5 + c6)‖x̄k − xk‖3

≤ c9‖x̄k − xk‖3,

(3.36)

where c9 = 4Lδ
2Mc4σ̄

−2
r + c5+ c6. Thus, we have from (3.1)–(3.3), (3.7), (3.35) and

(3.36) that

c1‖x̄k+1 − xk+1‖ ≤ ‖F (xk+1)‖ = ‖F (yk + d̂k)‖
≤ ‖F (yk) + J(yk)d̂k‖+ L1‖d̂k‖2

≤ ‖F (yk) + Jkd̂k‖+ ‖(J(yk)− Jk)d̂k‖+ L1‖d̂k‖2

≤ c9‖x̄k − xk‖3 + L1‖dk‖‖d̂k‖+ L1‖d̂k‖2

≤ c9‖x̄k − xk‖3 + L1c̃2c8‖x̄k − xk‖3 + L1c
2
8‖x̄k − xk‖4,

which gives

(3.37) ‖x̄k+1 − xk+1‖ ≤ c10‖x̄k − xk‖3,

where c10 = c−1
1 (c9 + L1c̃2c8 + L1c

2
8). (3.37) implies that {xk} converges to the

solution set cubically.
Note that

(3.38) ‖x̄k − xk‖ ≤ ‖x̄k+1 − xk+1‖+ ‖sk‖.

It follows from (3.37) that

(3.39) ‖x̄k − xk‖ ≤ 2‖sk‖

holds for all sufficiently large k. Hence we deduce from (3.37) and Lemma 3.2 that

(3.40) ‖sk+1‖ ≤ O(‖sk‖3).

The above inequality indicates that {xk} converges to some solution of (1.1) cubi-
cally, which is stronger than the convergence to the solution set.

We summarize our results in this section as follows:

Theorem 3.6. Under the conditions of Assumption 3.1, the sequence generated by
Algorithm 2.1 converges to some solution of (1.1) cubically.
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From the analyses above, we can see that under the local error bound condition
which is weaker than nonsingularity, we have

λk+1

λ3
k

=
μk+1‖Fk+1‖δ
(μk‖Fk‖δ)3

≤ O

(
‖xk+1 − x̄k+1‖δ
‖xk − x̄k‖3δ

)
= O

(
‖sk+1‖δ
‖sk‖3δ

)
= O(1),

which implies that not only the LM parameter {λk} converges but also {Fk} con-
verges cubically to zero as {xk} converges cubically to the solution of (1.1).

4. Numerical results

We tested Algorithm 2.1 on some singular problems, and compared it with the
general LM algorithm which does not solve the linear equations (2.13) and only
computes the LM step dk.

The test problems were created by modifying the nonsingular problems given by
Moré, Garbow and Hillstrom in [9], and have the same form as in [11],

F̂ (x) = F (x)− J(x∗)A(ATA)−1AT (x− x∗),

where F (x) is the standard nonsingular test function, x∗ is its root, and A ∈ Rn×k

has full column rank with 1 ≤ k ≤ n. Obviously, F̂ (x∗) = 0 and

Ĵ(x∗) = J(x∗)(I −A(ATA)−1AT )

has rank n−k. A disadvantage of these problems is that F̂ (x) may have roots that

are not roots of F (x). We created two sets of singular problems, with Ĵ(x∗) having
rank n− 1 and n− 2, by using

A ∈ Rn×1, AT = (1, 1, · · · , 1)
and

A ∈ Rn×2, AT =

(
1 1 1 1 · · · 1
1 −1 1 −1 · · · ±1

)
,

respectively. Meanwhile, we made a slight alteration on the variable dimension
problem, which has n+2 equations in n unknowns; we eliminate the (n−1)-th and
n-th equations. (The first n equations in the standard problem are linear.)

We set p0 = 0.0001, p1 = 0.25, p2 = 0.75, μ1 = 10−5 and δ = 1 for all the tests.
The algorithm is terminated when the norm of JT

k Fk, e.g., the derivative of Φ at
xk, is less than 10−5, or when the number of the iterations exceeds 100(n+1). The
results for the first set of problems of rank n−1 are listed in Table 1, and the second
set of rank n−2 in Table 2. The third column of the table indicates that the starting
point is x0, 10x0, and 100x0, where x0 is suggested by Moré, Garbow and Hillstrom
in [9]; “NF” and “NJ” represent the numbers of function calculations, and Jacobian
calculations, respectively; and “n.s.x∗?” gives a Y(yes) if the method converges to
the same solution as the corresponding nonsingular problem, an N(no) otherwise.
If the method failed to find the solution in 100(n+ 1) iterations, we denoted it by
the sign “–”, and if the iterations had underflows or overflows, we denoted it by
OF. Note that, for general nonlinear equations, the calculations of the Jacobian
are usually n times of the function calculations. So we also presented the values
“NF+NJ*n” for comparisions of the total calculations. However, if the Jacobian is
sparse, this kind of value does not mean much.
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Table 1. Results on the first singular test set with rank(F ′(x∗)) =
n− 1

(sk = dk) (sk = dk + d̂k)

Problem n x0 NF/NJ/NF+NJ*n n.s.x∗? NF/NJ/NF+NJ*n n.s.x∗?

1 2 1 15/15/45 Y 21/11/43 Y

10 17/17/51 Y 25/13/51 Y

100 21/21/63 Y 29/15/59 Y

3 2 1 – OF

10 35/18/71 Y –

4 4 1 16/16/80 Y 23/12/71 Y

10 19/19/95 Y 27/14/83 Y

100 22/22/110 Y 31/16/95 Y

5 3 1 8/8/32 N 11/6/29 N

10 8/8/32 N 9/5/24 N

100 8/8/32 N 11/6/29 N

6 31 1 44/25/819 N 75/15/540 N

8 10 1 8/8/88 Y 11/6/71 Y

10 23/23/253 Y 33/17/203 Y

9 10 1 4/4/44 N 5/3/35 N

10 7/7/77 N 11/6/71 N

100 9/9/99 N 13/7/83 N

10 30 1 6/6/186 Y 7/4/127 Y

10 7/7/217 Y 11/6/191 Y

100 10/10/310 N 13/7/223 N

11 30 1 35/19/605 N 45/9/315 N

10 60/46/1440 N 85/23/775 N

100 45/35/1095 N 99/24/819 N

12 10 1 14/14/154 Y 19/10/119 Y

10 16/16/176 Y 21/11/131 Y

100 19/19/209 Y 27/14/167 Y

13 30 1 9/9/279 Y 13/7/223 Y

10 14/14/434 Y 19/10/319 Y

100 17/17/527 Y 25/13/415 Y

14 30 1 12/12/372 Y 17/9/ 287 Y

10 18/18/558 Y 27/14/447 Y

100 24/24/744 Y 35/18/575 Y
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Table 2. Results on the second singular test set with
rank(F ′(x∗)) = n− 2

(sk = dk) (sk = dk + d̂k)

Problem n x0 NF/NJ/NF+NJ*n n.s.x∗? NF/NJ/NF+NJ*n n.s.x∗?

1 2 1 11/11/33 N 15/8/31 N

10 13/13/39 N 19/10/39 N

100 17/17/51 N 23/12/47 N

3 2 1 35/25/85 N 57/17/91 N

10 59/54/167 N 91/34/159 N

100 25/18/61 N 51/15/81 N

4 4 1 14/14/70 N 19/10/59 N

10 17/17/85 N 23/12/71 N

100 20/20/100 N 29/15/89 N

5 3 1 13/13/52 Y 19/10/49 Y

10 14/14/56 Y 19/10/49 Y

100 24/18/78 Y 21/11/54 Y

6 31 1 3200/1793/58783 N 3201/801/28032 N

8 10 1 8/8/88 Y 11/6/71 Y

10 23/23/253 Y 33/17/203 Y

9 10 1 4/4/44 N 5/3/35 N

10 7/7/77 N 11/6/71 N

100 10/10/110 N 13/7/83 N

10 30 1 6/6/186 Y 7/4/127 Y

10 7/7/217 Y 11/6/191 Y

100 10/10/310 N 15/8/255 N

11 30 1 19/9/289 N 41/9/311 N

10 62/41/1292 N 65/17/575 N

100 43/35/1093 N 87/23/777 N

12 10 1 14/14/154 Y 19/10/119 Y

10 16/16/176 Y 21/11/131 N

100 19/19/209 Y 27/14/167 N

13 30 1 9/9/279 Y 13/7/223 Y

10 14/14/434 Y 19/10/319 Y

100 17/17/527 Y 25/13/415 Y

14 30 1 12/12/372 Y 17/9/ 287 Y

10 18/18/558 Y 27/14/447 Y

100 24/24/744 Y 35/18/575 Y
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From the tables, we can see that Algorithm 2.1 almost always outperforms the
general LM algorithm, whether on the first singular test set or on the second test
set. Though the function calculations of Algorithm 2.1 are more than those of the
general LM algorithm, their Jacobian calculations are much less, which contributes
to fewer calculations of Algorithm 2.1 than the general LM algorithm. The numeri-
cal results also support the faster local convergence result of Algorithm 2.1 obtained
in Section 3 in some sense.
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