Rational points on diagonal quartic surfaces
HTML articles powered by AMS MathViewer
- by Andreas-Stephan Elsenhans;
- Math. Comp. 81 (2012), 481-492
- DOI: https://doi.org/10.1090/S0025-5718-2011-02500-7
- Published electronically: May 12, 2011
- PDF | Request permission
Abstract:
We searched up to height $10^7$ for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.References
- Daniel J. Bernstein, Enumerating solutions to $p(a)+q(b)=r(c)+s(d)$, Math. Comp. 70 (2001), no. 233, 389–394. MR 1709145, DOI 10.1090/S0025-5718-00-01219-9
- B. J. Birch, Forms in many variables, Proc. Roy. Soc. London Ser. A 265 (1961/62), 245–263. MR 150129, DOI 10.1098/rspa.1962.0007
- M. Bright: Computations on diagonal quartic surfaces, University of Cambridge, 2002
- M. Bright: The Brauer-Manin obstruction on a general diagonal quartic surface, Acta. Arith. 147 (2011), 291–302.
- Jean-Louis Colliot-Thélène, Dimitri Kanevsky, and Jean-Jacques Sansuc, Arithmétique des surfaces cubiques diagonales, Diophantine approximation and transcendence theory (Bonn, 1985) Lecture Notes in Math., vol. 1290, Springer, Berlin, 1987, pp. 1–108 (French). MR 927558, DOI 10.1007/BFb0078705
- A.-S. Elsenhans: Rational points on some Fano quadratic bundles, to appear in: Experimental Mathematics
- A.-S. Elsenhans: List of rational points on diagonal quartic surfaces, available online at http://www.staff.uni-bayreuth.de/$\sim$btm216/pinch_list_cases_2010.txt
- Andreas-Stephan Elsenhans and Jörg Jahnel, The Diophantine equation $x^4+2y^4=z^4+4w^4$, Math. Comp. 75 (2006), no. 254, 935–940. MR 2197001, DOI 10.1090/S0025-5718-05-01805-3
- Andreas-Stephan Elsenhans and Jörg Jahnel, The asymptotics of points of bounded height on diagonal cubic and quartic threefolds, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 317–332. MR 2282933, DOI 10.1007/11792086_{2}3
- A.-S. Elsenhans and J. Jahnel: The Diophantine Equation $x^4 + 2 y^4 = z^4 + 4 w^4$ — A number of improvements, Preprint
- Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, DOI 10.1007/BF01393904
- E. Ieronymou, A. N. Skorobogatov, and Y. G. Zarhin: On the Brauer group of diagonal quartic surfaces, to appear in: J. London Math. Soc.
- R. G. E. Pinch and H. P. F. Swinnerton-Dyer, Arithmetic of diagonal quartic surfaces. I, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 317–338. MR 1110399, DOI 10.1017/CBO9780511526053.013
- Emmanuel Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), no. 1, 101–218 (French). MR 1340296, DOI 10.1215/S0012-7094-95-07904-6
- Emmanuel Peyre, Points de hauteur bornée et géométrie des variétés (d’après Y. Manin et al.), Astérisque 282 (2002), Exp. No. 891, ix, 323–344 (French, with French summary). Séminaire Bourbaki, Vol. 2000/2001. MR 1975184
Bibliographic Information
- Andreas-Stephan Elsenhans
- Affiliation: Mathematisches Institut, Universität Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
- Email: Stephan.Elsenhans@uni-bayreuth.de
- Received by editor(s): August 19, 2010
- Received by editor(s) in revised form: October 13, 2010, and November 2, 2010
- Published electronically: May 12, 2011
- Additional Notes: The author was supported by the Deutsche Forschungsgemeinschaft (DFG)
The computer part of this work was executed on the servers of the chair for Computer Algebra at the University of Bayreuth. The author is grateful to Professor M. Stoll for permission to use these machines. He is also grateful to the system administrators for their support. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 481-492
- MSC (2010): Primary 11Y50; Secondary 14G05, 14J28
- DOI: https://doi.org/10.1090/S0025-5718-2011-02500-7
- MathSciNet review: 2833505