Multilevel preconditioning and adaptive sparse solution of inverse problems
HTML articles powered by AMS MathViewer
- by Stephan Dahlke, Massimo Fornasier and Thorsten Raasch;
- Math. Comp. 81 (2012), 419-446
- DOI: https://doi.org/10.1090/S0025-5718-2011-02507-X
- Published electronically: May 25, 2011
- PDF | Request permission
Abstract:
We are concerned with the efficient numerical solution of minimization problems in Hilbert spaces involving sparsity constraints. These optimizations arise, e.g., in the context of inverse problems. In this work we analyze an efficient variant of the well-known iterative soft-shrinkage algorithm for large or even infinite dimensional problems. This algorithm is modified in the following way. Instead of prescribing a fixed thresholding parameter, we use a decreasing thresholding strategy. Moreover, we use suitable variants of the adaptive schemes derived by Cohen, Dahmen and DeVore for the approximation of the infinite matrix-vector products. We derive a block multiscale preconditioning technique which allows for local well-conditioning of the underlying matrices and for extending the concept of restricted isometry property to infinitely labelled matrices. The combination of these ingredients gives rise to a numerical scheme that is guaranteed to converge with exponential rate, and which allows for a controlled inflation of the support size of the iterations. We also present numerical experiments that confirm the applicability of our approach which extends concepts from compressed sensing to large scale simulation.References
- Amir Beck and Marc Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2 (2009), no. 1, 183–202. MR 2486527, DOI 10.1137/080716542
- T. Bonesky, S. Dahlke, P. Maass, and T. Raasch, Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems, Adv. Comput. Math. 33 (2010), no. 4, 385–411.
- Kristian Bredies and Dirk A. Lorenz, Linear convergence of iterative soft-thresholding, J. Fourier Anal. Appl. 14 (2008), no. 5-6, 813–837. MR 2461608, DOI 10.1007/s00041-008-9041-1
- Emmanuel J. Candes and Terence Tao, Decoding by linear programming, IEEE Trans. Inform. Theory 51 (2005), no. 12, 4203–4215. MR 2243152, DOI 10.1109/TIT.2005.858979
- Emmanuel J. Candes and Terence Tao, Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inform. Theory 52 (2006), no. 12, 5406–5425. MR 2300700, DOI 10.1109/TIT.2006.885507
- Albert Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and its Applications, vol. 32, North-Holland Publishing Co., Amsterdam, 2003. MR 1990555
- Albert Cohen, Wolfgang Dahmen, and Ronald DeVore, Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp. 70 (2001), no. 233, 27–75. MR 1803124, DOI 10.1090/S0025-5718-00-01252-7
- A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods. II. Beyond the elliptic case, Found. Comput. Math. 2 (2002), no. 3, 203–245. MR 1907380, DOI 10.1007/s102080010027
- Patrick L. Combettes and Valérie R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4 (2005), no. 4, 1168–1200. MR 2203849, DOI 10.1137/050626090
- Stephan Dahlke, Massimo Fornasier, and Thorsten Raasch, Adaptive frame methods for elliptic operator equations, Adv. Comput. Math. 27 (2007), no. 1, 27–63. MR 2317920, DOI 10.1007/s10444-005-7501-6
- —, Multilevel preconditioning for adaptive sparse optimization, Preprint 25, DFG-SPP 1324, August 2009.
- Stephan Dahlke, Thorsten Raasch, Manuel Werner, Massimo Fornasier, and Rob Stevenson, Adaptive frame methods for elliptic operator equations: the steepest descent approach, IMA J. Numer. Anal. 27 (2007), no. 4, 717–740. MR 2371829, DOI 10.1093/imanum/drl035
- Wolfgang Dahmen, Wavelet and multiscale methods for operator equations, Acta numerica, 1997, Acta Numer., vol. 6, Cambridge Univ. Press, Cambridge, 1997, pp. 55–228. MR 1489256, DOI 10.1017/S0962492900002713
- Wolfgang Dahmen and Angela Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992), no. 3, 315–344. MR 1186345, DOI 10.1007/BF01385864
- W. Dahmen, S. Prössdorf, and R. Schneider, Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution, Adv. Comput. Math. 1 (1993), no. 3-4, 259–335. MR 1242378, DOI 10.1007/BF02072014
- Wolfgang Dahmen, Siegfried Prössdorf, and Reinhold Schneider, Multiscale methods for pseudo-differential equations on smooth closed manifolds, Wavelets: theory, algorithms, and applications (Taormina, 1993) Wavelet Anal. Appl., vol. 5, Academic Press, San Diego, CA, 1994, pp. 385–424. MR 1321437, DOI 10.1016/B978-0-08-052084-1.50023-5
- Ingrid Daubechies, Michel Defrise, and Christine De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math. 57 (2004), no. 11, 1413–1457. MR 2077704, DOI 10.1002/cpa.20042
- Ronald A. DeVore, Nonlinear approximation, Acta numerica, 1998, Acta Numer., vol. 7, Cambridge Univ. Press, Cambridge, 1998, pp. 51–150. MR 1689432, DOI 10.1017/S0962492900002816
- Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani, Least angle regression, Ann. Statist. 32 (2004), no. 2, 407–499. With discussion, and a rejoinder by the authors. MR 2060166, DOI 10.1214/009053604000000067
- Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1408680
- Stephen J. Wright, Robert D. Nowak, and Mário A. T. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process. 57 (2009), no. 7, 2479–2493. MR 2650165, DOI 10.1109/TSP.2009.2016892
- Mário A. T. Figueiredo and Robert D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process. 12 (2003), no. 8, 906–916. MR 2008658, DOI 10.1109/TIP.2003.814255
- Massimo Fornasier and Francesca Pitolli, Adaptive iterative thresholding algorithms for magnetoencephalography (MEG), J. Comput. Appl. Math. 221 (2008), no. 2, 386–395. MR 2457671, DOI 10.1016/j.cam.2007.10.048
- Tsogtgerel Gantumur, Helmut Harbrecht, and Rob Stevenson, An optimal adaptive wavelet method without coarsening of the iterands, Math. Comp. 76 (2007), no. 258, 615–629. MR 2291830, DOI 10.1090/S0025-5718-06-01917-X
- G. H. Golub and C. F. van Loan, Matrix Computations, John Hopkins University Press, 1989.
- Markus Grasmair, Markus Haltmeier, and Otmar Scherzer, Sparse regularization with $l^q$ penalty term, Inverse Problems 24 (2008), no. 5, 055020, 13. MR 2438955, DOI 10.1088/0266-5611/24/5/055020
- —, Necessary and sufficient conditions for linear convergence of $\ell _1$-regularization, preprint (2009).
- Tsogtgerel Gantumur, Helmut Harbrecht, and Rob Stevenson, An optimal adaptive wavelet method without coarsening of the iterands, Math. Comp. 76 (2007), no. 258, 615–629. MR 2291830, DOI 10.1090/S0025-5718-06-01917-X
- S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 5, 461–476 (French, with English summary). MR 1138533, DOI 10.1016/S0294-1449(16)30287-6
- P.-G. Lemarié, Bases de’ondelettes sur les groupes de Lie stratifié, Bulletin de la Société Mathématique de France 117 (1989), no. 2, 213–232.
- A. K. Louis, Inverse und schlechtgestellte Probleme, Teubner, Stuttgart, 1989.
- M. Primbs, Stabile biorthogonale Spline-Waveletbasen auf dem Intervall, Dissertation, Universität Duisburg-Essen, 2006.
- R. Ramlau, G. Teschke, and M. Zhariy, A compressive Landweber iteration for solving ill-posed inverse problems, Inverse Problems 24 (2008), no. 6, 065013, 26. MR 2456960, DOI 10.1088/0266-5611/24/6/065013
- H. Rauhut, Compressive sensing and structured random matrices, Theoretical Foundations and Numerical Methods for Sparse Recovery (M. Fornasier, ed.), Radon Series Comp. Appl. Math., deGruyter, 2010.
- Reinhold Schneider, Multiskalen- und Wavelet-Matrixkompression, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1998 (German, with German summary). Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. [Analysis-based methods for the efficient solution of large nonsparse systems of equations]. MR 1623209, DOI 10.1007/978-3-663-10851-1
- J.-L. Starck, E. J. Candès, and D. L. Donoho, Astronomical image representation by curvelet transform, Astronomy and Astrophysics 298 (2003), 785–800.
- J.-L. Starck, M. K. Nguyen, and F. Murtagh, Wavelets and curvelets for image deconvolution: a combined approach, Signal Proc. 83 (2003), 2279–2283.
- Rob Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal. 41 (2003), no. 3, 1074–1100. MR 2005196, DOI 10.1137/S0036142902407988
Bibliographic Information
- Stephan Dahlke
- Affiliation: Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Hans Meerwein Strasse, Lahnberge, 35032 Marburg, Germany
- Email: dahlke@mathematik.uni-marburg.de
- Massimo Fornasier
- Affiliation: Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040, Linz, Austria
- Address at time of publication: Faculty of Mathematics, Technical University of Munich, Boltzmannstrasse 3, D-85748 Garching, Germany
- Email: massimo.fornasier@ma.tum.de
- Thorsten Raasch
- Affiliation: Johannes Gutenberg-Universität, Institut für Mathematik, Staudingerweg 9, 55099 Mainz, Germany
- Email: raasch@uni-mainz.de
- Received by editor(s): August 14, 2009
- Received by editor(s) in revised form: November 18, 2010
- Published electronically: May 25, 2011
- Additional Notes: The work of Stephan Dahlke was supported by Deutsche Forschungsgemeinschaft (DFG), Grant DA 360/12–1.
The work of Massimo Fornasier was supported by the FWF project Y 432-N15 START-Preis “Sparse Approximation and Optimization in High Dimensions” and Deutsche Forschungsgemeinschaft (DFG), Grant DA 360/12–1.
The work of Thorsten Raasch was supported by Deutsche Forschungsgemeinschaft (DFG), Grants DA 360/7–1 and DA 360/11–1. - © Copyright 2011 American Mathematical Society
- Journal: Math. Comp. 81 (2012), 419-446
- MSC (2010): Primary 41A25, 65F35, 65F50, 65N12, 65T60
- DOI: https://doi.org/10.1090/S0025-5718-2011-02507-X
- MathSciNet review: 2833502