The imaginary abelian number fields of $2$-power degrees with ideal class groups of exponent $\leq 2$
HTML articles powered by AMS MathViewer
- by Jeoung-Hwan Ahn and Soun-Hi Kwon;
- Math. Comp. 81 (2012), 533-554
- DOI: https://doi.org/10.1090/S0025-5718-2011-02509-3
- Published electronically: July 1, 2011
- PDF | Request permission
Abstract:
In this paper, assuming the Generalized Riemann Hypothesis, we determine all imaginary abelian number fields $N$ of 2-power degrees with ideal class groups of exponents $\le 2$ for which the 2-ranks of the Galois group of $N$ over $\mathbb {Q}$ are equal to 2.References
- Francesco Amoroso and Roberto Dvornicich, Lower bounds for the height and size of the ideal class group in CM-fields, Monatsh. Math. 138 (2003), no. 2, 85–94. MR 1963737, DOI 10.1007/s00605-002-0499-7
- Jeoung-Hwan Ahn and Soun-Hi Kwon, The class groups of the imaginary abelian number fields with Galois group $(\Bbb Z/2\Bbb Z)^n$, Bull. Austral. Math. Soc. 70 (2004), no. 2, 267–277. MR 2094294, DOI 10.1017/S0004972700034481
- David W. Boyd and H. Kisilevsky, On the exponent of the ideal class groups of complex quadratic fields, Proc. Amer. Math. Soc. 31 (1972), 433–436. MR 289454, DOI 10.1090/S0002-9939-1972-0289454-4
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, DC, 1967. MR 215665
- P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Mathematics, vol. 8, World Scientific Publishing Co., Singapore, 1988. MR 963648, DOI 10.1142/0663
- C. Chevalley, Sur la théorie du corps de classes dans les corps finis et les corps locaux, Jour. of the Fac. of Sc., Tokyo, vol. II, Part 9 (1933).
- S. Chowla, An extension of Heilbronn’s class number theorem, Quart. J. Math. Oxford Ser. (2) 5 (1934), 304-307.
- A. G. Earnest, Exponents of the class groups of imaginary abelian number fields, Bull. Austral. Math. Soc. 35 (1987), no. 2, 231–246. MR 878434, DOI 10.1017/S0004972700013198
- Georges Gras, Sur les $l$-classes d’idéaux dans les extensions cycliques relatives de degré premier $l$. I, II, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 1–48; ibid. 23 (1973), no. 4, 1–44 (French, with English summary). MR 360519, DOI 10.5802/aif.471
- H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Academie-Verlag, Berlin, 1952. Reprinted with an introduction by J. Martinet, Springer-Verlag, Berlin (1985).
- D. R. Heath-Brown, Imaginary quadratic fields with class group exponent 5, Forum Math. 20 (2008), no. 2, 275–283. MR 2394923, DOI 10.1515/FORUM.2008.014
- Kuniaki Horie and Mitsuko Horie, CM-fields and exponents of their ideal class groups, Acta Arith. 55 (1990), no. 2, 157–170. MR 1061636, DOI 10.4064/aa-55-2-157-170
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI 10.1006/jsco.1996.0126
- S. Louboutin and R. Okazaki, Exponents of the ideal class groups of CM number fields, Math. Z. 243 (2003), no. 1, 155–159. MR 1953054, DOI 10.1007/s00209-002-0477-8
- Stéphane Louboutin, Minorations (sous l’hypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires. Application, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 12, 795–800 (French, with English summary). MR 1058499
- Stéphane Louboutin, Determination of all nonquadratic imaginary cyclic number fields of $2$-power degrees with ideal class groups of exponents $\leq 2$, Math. Comp. 64 (1995), no. 209, 323–340. MR 1248972, DOI 10.1090/S0025-5718-1995-1248972-6
- Stéphane Louboutin, CM-fields with cyclic ideal class groups of $2$-power orders, J. Number Theory 67 (1997), no. 1, 1–10. MR 1485424, DOI 10.1006/jnth.1997.2179
- Stéphane Louboutin, Computation of $L(0,\chi )$ and of relative class numbers of CM-fields, Nagoya Math. J. 161 (2001), 171–191. MR 1820217, DOI 10.1017/S0027763000022170
- John Myron Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), no. 3, 297–319. MR 511747
- Jürgen Neukirch, Class field theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231, DOI 10.1007/978-3-642-82465-4
- B. Allombert, K. Belabas, H. Cohen, X. Robolot, and I. Zakharevich, PARI/GP, version 2.3.4, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/.
- Olivier Ramaré, Approximate formulae for $L(1,\chi )$, Acta Arith. 100 (2001), no. 3, 245–266. MR 1865385, DOI 10.4064/aa100-3-2
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117–124. MR 313221, DOI 10.4064/aa-22-2-117-124
Bibliographic Information
- Jeoung-Hwan Ahn
- Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea
- Email: jh-ahn@korea.ac.kr
- Soun-Hi Kwon
- Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea
- Email: sounhikwon@korea.ac.kr
- Received by editor(s): November 15, 2009
- Received by editor(s) in revised form: November 29, 2010
- Published electronically: July 1, 2011
- Additional Notes: This research was supported by Grant KRF-2008-313-C00008.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 533-554
- MSC (2010): Primary 11R29, 11R20
- DOI: https://doi.org/10.1090/S0025-5718-2011-02509-3
- MathSciNet review: 2833507