Numerical solution of the ${\mathbb R}$-linear Beltrami equation
HTML articles powered by AMS MathViewer
- by Marko Huhtanen and Allan Perämäki;
- Math. Comp. 81 (2012), 387-397
- DOI: https://doi.org/10.1090/S0025-5718-2011-02541-X
- Published electronically: August 9, 2011
- PDF | Request permission
Abstract:
The $\mathbb {R}$-linear Beltrami equation appears in applications, such as the inverse problem of recovering the electrical conductivity distribution in the plane. In this paper, a new way to discretize the $\mathbb {R}$-linear Beltrami equation is considered. This gives rise to large and dense $\mathbb {R}$-linear systems of equations with structure. For their iterative solution, norm minimizing Krylov subspace methods are devised. In the numerical experiments, these improvements combined are shown to lead to speed-ups of almost two orders of magnitude in the electrical conductivity problem.References
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, and Samuli Siltanen, Numerical computation of complex geometrical optics solutions to the conductivity equation, Appl. Comput. Harmon. Anal. 29 (2010), no. 1, 2–17. MR 2647008, DOI 10.1016/j.acha.2009.08.001
- Kari Astala and Lassi Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006), no. 1, 265–299. MR 2195135, DOI 10.4007/annals.2006.163.265
- Timo Eirola, Marko Huhtanen, and Jan von Pfaler, Solution methods for $\Bbb R$-linear problems in $\Bbb C^n$, SIAM J. Matrix Anal. Appl. 25 (2003), no. 3, 804–828. MR 2081236, DOI 10.1137/S0895479802415946
- Tadeusz Iwaniec and Gaven Martin, The Beltrami equation, Mem. Amer. Math. Soc. 191 (2008), no. 893, x+92. MR 2377904, DOI 10.1090/memo/0893
- K. Knudsen, J. Mueller, and S. Siltanen, Numerical solution method for the dbar-equation in the plane, J. Comput. Phys. 198 (2004), no. 2, 500–517. MR 2062911, DOI 10.1016/j.jcp.2004.01.028
- Solomon Grigorevich Mikhlin and Siegfried Prössdorf, Singular integral operators, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 68, Akademie-Verlag, Berlin, 1986. Translated from the German by Albrecht Böttcher and Reinhard Lehmann. MR 867687, DOI 10.1007/978-3-642-61631-0
- Jennifer L. Mueller and Samuli Siltanen, Direct reconstructions of conductivities from boundary measurements, SIAM J. Sci. Comput. 24 (2003), no. 4, 1232–1266. MR 1976215, DOI 10.1137/S1064827501394568
- Youcef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 856–869. MR 848568, DOI 10.1137/0907058
- Gennadi Vainikko, Fast solvers of the Lippmann-Schwinger equation, Direct and inverse problems of mathematical physics (Newark, DE, 1997) Int. Soc. Anal. Appl. Comput., vol. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 423–440. MR 1766314, DOI 10.1007/978-1-4757-3214-6_{2}5
- D. C. Youla, A normal form for a matrix under the unitary congruence group, Canadian J. Math. 13 (1961), 694–704. MR 132754, DOI 10.4153/CJM-1961-059-8
Bibliographic Information
- Marko Huhtanen
- Affiliation: Institute of Mathematics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
- Email: Marko.Huhtanen@tkk.fi
- Allan Perämäki
- Affiliation: Institute of Mathematics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
- Email: Allan.Peramaki@tkk.fi
- Received by editor(s): June 18, 2010
- Received by editor(s) in revised form: December 15, 2010
- Published electronically: August 9, 2011
- Additional Notes: The research of both authors was supported by the Academy of Finland
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 387-397
- MSC (2010): Primary 65R20, 65F10, 45Q05
- DOI: https://doi.org/10.1090/S0025-5718-2011-02541-X
- MathSciNet review: 2833500