Explicit upper bounds for the remainder term in the divisor problem
HTML articles powered by AMS MathViewer
- by D. Berkane, O. Bordellès and O. Ramaré;
- Math. Comp. 81 (2012), 1025-1051
- DOI: https://doi.org/10.1090/S0025-5718-2011-02535-4
- Published electronically: August 25, 2011
- PDF | Request permission
Abstract:
We first report on computations made using the GP/PARI package that show that the error term $\Delta (x)$ in the divisor problem is $=\mathscr {M}(x,4)+ O^*(0.35 x^{1/4}\log x)$ when $x$ ranges $[1 081 080, 10^{10}]$, where $\mathscr {M}(x,4)$ is a smooth approximation. The remaining part (and in fact most) of the paper is devoted to showing that $|\Delta (x)|\le 0.397 {x^{1/2}}$ when $x\ge 5 560$ and that $|\Delta (x)|\le 0.764 {x^{1/3}\log x}$ when $x\ge 9 995$. Several other bounds are also proposed. We use this results to get an improved upper bound for the class number of a quadractic imaginary field and to get a better remainder term for averages of multiplicative functions that are close to the divisor function. We finally formulate a positivity conjecture concerning $\Delta (x)$.References
- Olivier Bordellès, Explicit upper bounds for the average order of $d_n(m)$ and application to class number, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 38, 15. MR 1917797
- Yuanyou F. Cheng and Sidney W. Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), no. 4, 1261–1280. MR 2095256, DOI 10.1216/rmjm/1181069799
- Mark W. Coffey, New results on the Stieltjes constants: asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), no. 2, 603–612. MR 2209581, DOI 10.1016/j.jmaa.2005.06.048
- J.-M. Deshouillers and F. Dress, Sommes de diviseurs et structure multiplicative des entiers, Acta Arith. 49 (1988), no. 4, 341–375 (French). MR 937932, DOI 10.4064/aa-49-4-341-375
- J. Furuya, Y. Tanigawa, and W. Zhai, Dirichlet series obtained from the error term in the Dirichlet divisor problem, Monatsh. Math. 160 (2010), no. 4, 385–402. MR 2661321, DOI 10.1007/s00605-010-0195-y
- Andrew Granville and Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), no. 1, 73–107. MR 1401709, DOI 10.1112/S0025579300011608
- M. N. Huxley and A. Ivić, Subconvexity for the Riemann zeta-function and the divisor problem, Bull. Cl. Sci. Math. Nat. Sci. Math. 32 (2007), 13–32. MR 2386169
- Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- A. Ivić, On the integral of the error term in the Dirichlet divisor problem, Bull. Cl. Sci. Math. Nat. Sci. Math. 25 (2000), 29–45. MR 1842813
- Rick Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp. 72 (2003), no. 243, 1379–1397. MR 1972742, DOI 10.1090/S0025-5718-02-01483-7
- Mao Hua Le, Upper bounds for class numbers of real quadratic fields, Acta Arith. 68 (1994), no. 2, 141–144. MR 1305196, DOI 10.4064/aa-68-2-141-144
- Žozef Linkovskiĭ, The lower and upper bound estimates of the mean values of numerical functions, Rev. Roumaine Math. Pures Appl. 15 (1970), 69–73 (Russian). MR 262195
- Tom Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 151, 337–343. MR 907241, DOI 10.1093/qmath/38.3.337
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267, DOI 10.1007/978-3-662-07001-7
- Olivier Ramaré, On Šnirel′man’s constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 4, 645–706. MR 1375315
- Olivier Ramaré, Approximate formulae for $L(1,\chi )$, Acta Arith. 100 (2001), no. 3, 245–266. MR 1865385, DOI 10.4064/aa100-3-2
- Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397–425. MR 1320898, DOI 10.1090/S0025-5718-96-00669-2
- R. Sitaramachandra Rao, An integral involving the remainder term in the Piltz divisor problem, Acta Arith. 48 (1987), no. 1, 89–92. MR 893465, DOI 10.4064/aa-48-1-89-92
- H. Riesel and R. C. Vaughan, On sums of primes, Ark. Mat. 21 (1983), no. 1, 46–74. MR 706639, DOI 10.1007/BF02384300
- PARI/GP, version 2.4.3. Bordeaux, 2008. http://pari.math.u-bordeaux.fr/.
- G. Voronoï. Sur un problème de calculs des fonctions asymptotiques. J. Reine Angew. Math., 126:241–282, 1903.
- Georges Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup. (3) 21 (1904), 207–267 (French). MR 1509041
- Georges Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries (suite), Ann. Sci. École Norm. Sup. (3) 21 (1904), 459–533 (French). MR 1509047
Bibliographic Information
- D. Berkane
- Affiliation: Département de Mathématiques, Université de Blida, 270 route de soumaa, 09 000 Blida, Algérie
- Email: djameberkan@gmail.fr
- O. Bordellès
- Affiliation: 2, allée de la combe, 43 000 Aiguilhe, France
- Email: borde43@wanadoo.fr
- O. Ramaré
- Affiliation: CNRS / Laboratoire Paul Painlevé, Université Lille 1, 59 655 Villeneuve d’Ascq cedex, France
- MR Author ID: 360330
- Email: ramare@math.univ-lille1.fr
- Received by editor(s): January 3, 2011
- Received by editor(s) in revised form: February 16, 2011
- Published electronically: August 25, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 1025-1051
- MSC (2010): Primary 11N56; Secondary 11N37
- DOI: https://doi.org/10.1090/S0025-5718-2011-02535-4
- MathSciNet review: 2869048
Dedicated: To the memory of John Selfridge