An improved upper bound for the argument of the Riemann zeta-function on the critical line
HTML articles powered by AMS MathViewer
- by Timothy Trudgian;
- Math. Comp. 81 (2012), 1053-1061
- DOI: https://doi.org/10.1090/S0025-5718-2011-02537-8
- Published electronically: August 25, 2011
- PDF | Request permission
Abstract:
This paper concerns the function $S(t)$, the argument of the Riemann zeta-function along the critical line. Improving on the method of Backlund, and taking into account the refinements of Rosser and McCurley it is proved that for sufficiently large $t$, \begin{equation*} |S(t)| \leq 0.1013 \log t. \end{equation*} Theorem 2 makes the above result explicit, viz. it enables one to select values of $a$ and $b$ such that, for $t>t_{0}$, \begin{equation*} |S(t)| \leq a + b\log t. \end{equation*}References
- R. J. Backlund, Über die Nullstellen der Riemannschen Zetafunction, Acta Mathematica 41 (1918), 345–375.
- Yuanyou F. Cheng and Sidney W. Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), no. 4, 1261–1280. MR 2095256, DOI 10.1216/rmjm/1181069799
- M. N. Huxley, Exponential sums and the Riemann zeta function. V, Proc. London Math. Soc. (3) 90 (2005), no. 1, 1–41. MR 2107036, DOI 10.1112/S0024611504014959
- Habiba Kadiri, Une région explicite sans zéros pour la fonction $\zeta$ de Riemann, Acta Arith. 117 (2005), no. 4, 303–339 (French). MR 2140161, DOI 10.4064/aa117-4-1
- R. Sherman Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. MR 258768, DOI 10.1112/plms/s3-20.2.303
- Kevin S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), no. 165, 265–285. MR 726004, DOI 10.1090/S0025-5718-1984-0726004-6
- Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959/60), 192–204. MR 117200, DOI 10.1007/BF01162949
- Hans Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR 364103
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- Yannick Saouter and Patrick Demichel, A sharp region where $\pi (x)-\textrm {li}(x)$ is positive, Math. Comp. 79 (2010), no. 272, 2395–2405. MR 2684372, DOI 10.1090/S0025-5718-10-02351-3
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- T.S. Trudgian, Improvements to Turing’s Method, Mathematics of Computation (to appear).
- S. Wedeniwski, Results connected with the first 100 billion zeros of the Riemann zeta function, http://www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html, 2004.
Bibliographic Information
- Timothy Trudgian
- Affiliation: Department of Mathematics and Computer Science, University of Lethbridge, Alberta, Canada, T1K 3M4
- MR Author ID: 909247
- Email: tim.trudgian@uleth.ca
- Received by editor(s): October 21, 2010
- Received by editor(s) in revised form: February 23, 2011
- Published electronically: August 25, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 1053-1061
- MSC (2010): Primary 11M06; Secondary 11M26
- DOI: https://doi.org/10.1090/S0025-5718-2011-02537-8
- MathSciNet review: 2869049