Gram lines and the average of the real part of the Riemann zeta function
HTML articles powered by AMS MathViewer
- by Kevin A. Broughan and A. Ross Barnett;
- Math. Comp. 81 (2012), 1669-1679
- DOI: https://doi.org/10.1090/S0025-5718-2011-02565-2
- Published electronically: December 7, 2011
- PDF | Request permission
Abstract:
The contours $\Im \Lambda (s)=0$ of the function which satisfies $\zeta (1-s)=\Lambda (s)\zeta (s)$ cross the critical strip on lines which are almost horizontal and straight, and which cut the critical line alternately at Gram points and points where $\zeta (s)$ is imaginary. When suitably averaged the real part of $\zeta (s)$ satisfies a relation which greatly extends a theorem of Titchmarsh, (namely that the average of $\zeta (s)$ over the Gram points has the value 2), to the open right-hand half plane $\sigma >0$.References
- R. Backlund, Sur les zéros de la fonction $\zeta (s)$ de Riemann, C. R. Acad. Sci. Paris, 158 (1914), 1979–1982.
- R. P. Brent, J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. II, Math. Comp. 39 (1982), no. 160, 681–688. MR 669660, DOI 10.1090/S0025-5718-1982-0669660-1
- Kevin A. Broughan, Holomorphic flows on simply connected regions have no limit cycles, Meccanica 38 (2003), no. 6, 699–709. Dynamical systems: theory and applications (Łódź, 2001). MR 2028269, DOI 10.1023/A:1025821123532
- H. M. Edwards, Riemann’s zeta function, Dover Publications, Inc., Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New York; MR0466039 (57 #5922)]. MR 1854455
- J. -P. Gram, Note sur les zéros de la fonction $\xi (s)$ de Riemann, Acta Math. 27 (1903), no. 1, 289–304 (French). MR 1554986, DOI 10.1007/BF02421310
- J. I. Hutchinson, On the roots of the Riemann zeta function, Trans. Amer. Math. Soc. 27 (1925), no. 1, 49–60. MR 1501297, DOI 10.1090/S0002-9947-1925-1501297-5
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 86082, DOI 10.1007/BF02401102
- J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld, Rigorous computation and the zeros of the Riemann zeta-function. (With discussion), Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR 258245
- E. C. Titchmarsh, On van der Corput’s method and the zeta-function of Riemann, (IV). Quart. J. Math. Oxford Ser. 5, (1934), 98–105.
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- Timothy Trudgian, On the success and failure of Gram’s law and the Rosser rule, Acta Arith. 148 (2011), no. 3, 225–256. MR 2794929, DOI 10.4064/aa148-3-2
Bibliographic Information
- Kevin A. Broughan
- Affiliation: University of Waikato, Hamilton, New Zealand
- Email: kab@waikato.ac.nz
- A. Ross Barnett
- Affiliation: University of Waikato, Hamilton, New Zealand
- Email: arbus@math.waikato.ac.nz
- Received by editor(s): November 28, 2010
- Received by editor(s) in revised form: March 25, 2011, and April 15, 2011
- Published electronically: December 7, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 1669-1679
- MSC (2010): Primary 11M06
- DOI: https://doi.org/10.1090/S0025-5718-2011-02565-2
- MathSciNet review: 2904597