Spectral measures and Cuntz algebras
HTML articles powered by AMS MathViewer
- by Dorin Ervin Dutkay and Palle E. T. Jorgensen;
- Math. Comp. 81 (2012), 2275-2301
- DOI: https://doi.org/10.1090/S0025-5718-2012-02589-0
- Published electronically: February 14, 2012
- PDF | Request permission
Abstract:
We consider a family of measures $\mu$ supported in $\mathbb {R}^d$ and generated in the sense of Hutchinson by a finite family of affine transformations. It is known that interesting sub-families of these measures allow for an orthogonal basis in $L^2(\mu )$ consisting of complex exponentials, i.e., a Fourier basis corresponding to a discrete subset $\Gamma$ in $\mathbb {R}^d$. Here we offer two computational devices for understanding the interplay between the possibilities for such sets $\Gamma$ (spectrum) and the measures $\mu$ themselves. Our computations combine the following three tools: duality, discrete harmonic analysis, and dynamical systems based on representations of the Cuntz $C^*$-algebras $\mathcal O_N$.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Akram Aldroubi, Carlos Cabrelli, Douglas Hardin, and Ursula Molter, Optimal shift invariant spaces and their Parseval frame generators, Appl. Comput. Harmon. Anal. 23 (2007), no. 2, 273–283. MR 2344616, DOI 10.1016/j.acha.2007.05.001
- K. T. Arasu, Warwick de Launey, and S. L. Ma, On circulant complex Hadamard matrices, Des. Codes Cryptogr. 25 (2002), no. 2, 123–142. MR 1883962, DOI 10.1023/A:1013817013980
- Michael F. Barnsley, Transformations between self-referential sets, Amer. Math. Monthly 116 (2009), no. 4, 291–304. MR 2503315, DOI 10.4169/193009709X470155
- Michael Barnsley, John Hutchinson, and Örjan Stenflo, A fractal valued random iteration algorithm and fractal hierarchy, Fractals 13 (2005), no. 2, 111–146. MR 2151094, DOI 10.1142/S0218348X05002799
- O. Bratteli and P. E. T. Jorgensen, Endomorphisms of ${\scr B}({\scr H})$. II. Finitely correlated states on ${\scr O}_n$, J. Funct. Anal. 145 (1997), no. 2, 323–373. MR 1444086, DOI 10.1006/jfan.1996.3033
- Ola Bratteli and Palle E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale $N$, Integral Equations Operator Theory 28 (1997), no. 4, 382–443. MR 1465320, DOI 10.1007/BF01309155
- Ola Bratteli and Palle E. T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999), no. 663, x+89. MR 1469149, DOI 10.1090/memo/0663
- O. Bratteli, P. E. T. Jorgensen, A. Kishimoto, and R. F. Werner, Pure states on $\scr O_d$, J. Operator Theory 43 (2000), no. 1, 97–143. MR 1740897
- William D. Banks and Florian Luca, Sums of prime divisors and Mersenne numbers, Houston J. Math. 33 (2007), no. 2, 403–413. MR 2308986
- Joseph A. Ball and Victor Vinnikov, Functional models for representations of the Cuntz algebra, Operator theory, systems theory and scattering theory: multidimensional generalizations, Oper. Theory Adv. Appl., vol. 157, Birkhäuser, Basel, 2005, pp. 1–60. MR 2129642, DOI 10.1007/3-7643-7303-2_{1}
- D. Cerveau, J.-P. Conze, and A. Raugi, Ensembles invariants pour un opérateur de transfert dans $\textbf {R}^d$, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), no. 2, 161–186 (French, with English and French summaries). MR 1418931, DOI 10.1007/BF01259358
- R. Craigen, W. H. Holzmann, and H. Kharaghani, On the asymptotic existence of complex Hadamard matrices, J. Combin. Des. 5 (1997), no. 5, 319–327. MR 1465343, DOI 10.1002/(SICI)1520-6610(1997)5:5<319::AID-JCD1>3.3.CO;2-W
- J.-P. Conze, L. Hervé, and A. Raugi, Pavages auto-affines, opérateurs de transfert et critères de réseau dans $\textbf {R}^d$, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 1, 1–42 (French, with English and French summaries). MR 1444447, DOI 10.1007/BF01235987
- Alain Connes and Matilde Marcolli, Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, pp. 617–713. MR 2290770, DOI 10.1007/978-3-540-30308-4_{1}3
- Jean-Pierre Conze and Albert Raugi, Fonctions harmoniques pour un opérateur de transition et applications, Bull. Soc. Math. France 118 (1990), no. 3, 273–310 (French, with English summary). MR 1078079, DOI 10.24033/bsmf.2148
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- Qi-Rong Deng, Reverse iterated function system and dimension of discrete fractals, Bull. Aust. Math. Soc. 79 (2009), no. 1, 37–47. MR 2486879, DOI 10.1017/S000497270800097X
- Remco Duits, Luc Florack, Jan de Graaf, and Bart ter Haar Romeny, On the axioms of scale space theory, J. Math. Imaging Vision 20 (2004), no. 3, 267–298. MR 2060148, DOI 10.1023/B:JMIV.0000024043.96722.aa
- P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A 37 (2004), no. 20, 5355–5374. MR 2065675, DOI 10.1088/0305-4470/37/20/008
- Dorin E. Dutkay and Palle E. T. Jorgensen, Wavelets on fractals, Rev. Mat. Iberoam. 22 (2006), no. 1, 131–180. MR 2268116, DOI 10.4171/RMI/452
- Dorin Ervin Dutkay and Palle E. T. Jorgensen, Iterated function systems, Ruelle operators, and invariant projective measures, Math. Comp. 75 (2006), no. 256, 1931–1970. MR 2240643, DOI 10.1090/S0025-5718-06-01861-8
- Dorin Ervin Dutkay and Palle E. T. Jorgensen, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z. 256 (2007), no. 4, 801–823. MR 2308892, DOI 10.1007/s00209-007-0104-9
- Dorin Ervin Dutkay, Palle E. T. Jorgensen, and Gabriel Picioroaga, Unitary representations of wavelet groups and encoding of iterated function systems in solenoids, Ergodic Theory Dynam. Systems 29 (2009), no. 6, 1815–1852. MR 2563094, DOI 10.1017/S0143385708000904
- Xiaoyan Deng, Helong Li, and Xiaokun Chen, The symbol series expression and Hölder exponent estimates of fractal interpolation function, J. Comput. Anal. Appl. 11 (2009), no. 3, 507–523. MR 2530679
- Kevin Ford, Florian Luca, and Igor E. Shparlinski, On the largest prime factor of the Mersenne numbers, Bull. Aust. Math. Soc. 79 (2009), no. 3, 455–463. MR 2505350, DOI 10.1017/S0004972709000033
- Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121. MR 470754, DOI 10.1016/0022-1236(74)90072-x
- Daniel Gonçalves and Danilo Royer, Perron-Frobenius operators and representations of the Cuntz-Krieger algebras for infinite matrices, J. Math. Anal. Appl. 351 (2009), no. 2, 811–818. MR 2473986, DOI 10.1016/j.jmaa.2008.11.018
- Xing-Gang He and Ka-Sing Lau, On a generalized dimension of self-affine fractals, Math. Nachr. 281 (2008), no. 8, 1142–1158. MR 2427166, DOI 10.1002/mana.200510666
- Tian-You Hu and Ka-Sing Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 (2008), no. 2, 554–567. MR 2435649, DOI 10.1016/j.aim.2008.05.004
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Palle E. T. Jørgensen, Spectral theory of finite volume domains in $\textbf {R}^{n}$, Adv. in Math. 44 (1982), no. 2, 105–120. MR 658536, DOI 10.1016/0001-8708(82)90001-9
- Palle E. T. Jorgensen, Analysis and probability: wavelets, signals, fractals, Graduate Texts in Mathematics, vol. 234, Springer, New York, 2006. MR 2254502
- H. Kharaghani and Jennifer Seberry, The excess of complex Hadamard matrices, Graphs Combin. 9 (1993), no. 1, 47–56. MR 1215584, DOI 10.1007/BF01195326
- King-Shun Leung and Ka-Sing Lau, Disklikeness of planar self-affine tiles, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3337–3355. MR 2299458, DOI 10.1090/S0002-9947-07-04106-2
- Alexandru Mihail and Radu Miculescu, The shift space for an infinite iterated function system, Math. Rep. (Bucur.) 11(61) (2009), no. 1, 21–32. MR 2506506
- Leo Murata and Carl Pomerance, On the largest prime factor of a Mersenne number, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 209–218. MR 2076597, DOI 10.1090/crmp/036/16
- Ursula M. Molter and Leandro Zuberman, A fractal Plancherel theorem, Real Anal. Exchange 34 (2009), no. 1, 69–85. MR 2527123, DOI 10.14321/realanalexch.34.1.0069
- Kasso A. Okoudjou and Robert S. Strichartz, Weak uncertainty principles on fractals, J. Fourier Anal. Appl. 11 (2005), no. 3, 315–331. MR 2167172, DOI 10.1007/s00041-005-4032-y
- Steen Pedersen, On the dual spectral set conjecture, Current trends in operator theory and its applications, Oper. Theory Adv. Appl., vol. 149, Birkhäuser, Basel, 2004, pp. 487–491. MR 2063764
- Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251–258. MR 2067470, DOI 10.4310/MRL.2004.v11.n2.a8
- Klaus Thomsen, On the structure of beta shifts, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 321–332. MR 2180243, DOI 10.1090/conm/385/07204
- Zu-Guo Yu, Vo Anh, Ka-Sing Lau, and Ka-Hou Chu, The genomic tree of living organisms based on a fractal model, Phys. Lett. A 317 (2003), no. 3-4, 293–302. MR 2018655, DOI 10.1016/j.physleta.2003.08.040
- Haibiao Zheng, Yanren Hou, Feng Shi, and Lina Song, A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, J. Comput. Phys. 228 (2009), no. 16, 5961–5977. MR 2542923, DOI 10.1016/j.jcp.2009.05.006
Bibliographic Information
- Dorin Ervin Dutkay
- Affiliation: University of Central Florida, Department of Mathematics, 4000 Central Florida Blvd., P.O. Box 161364, Orlando, Florida 32816-1364
- MR Author ID: 608228
- Email: ddutkay@mail.ucf.edu
- Palle E. T. Jorgensen
- Affiliation: University of Iowa, Department of Mathematics, 14 MacLean Hall, Iowa City, Iowa 52242-1419
- MR Author ID: 95800
- ORCID: 0000-0003-2681-5753
- Email: jorgen@math.uiowa.edu
- Received by editor(s): January 25, 2010
- Received by editor(s) in revised form: July 14, 2011
- Published electronically: February 14, 2012
- Additional Notes: With partial support by the National Science Foundation
- © Copyright 2012 American Mathematical Society
- Journal: Math. Comp. 81 (2012), 2275-2301
- MSC (2010): Primary 28A80, 42B05, 46C05, 46L89
- DOI: https://doi.org/10.1090/S0025-5718-2012-02589-0
- MathSciNet review: 2945156