Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound
HTML articles powered by AMS MathViewer
- by Nikolaos Sfakianakis;
- Math. Comp. 82 (2013), 129-151
- DOI: https://doi.org/10.1090/S0025-5718-2012-02615-9
- Published electronically: August 16, 2012
- PDF | Request permission
Abstract:
We consider 3-point numerical schemes, that resolve scalar conservation laws, that are oscillatory either to their dispersive or anti-diffusive nature. The spatial discretization is performed over non-uniform adaptively redefined meshes. We provide a model for studying the evolution of the extremes of the oscillations. We prove that proper mesh reconstruction is able to control the oscillations; we provide bounds for the Total Variation (TV) of the numerical solution. We, moreover, prove under more strict assumptions that the increase of the TV, due to the oscillatory behavior of the numerical schemes, decreases with time; hence proving that the overall scheme is TV Increase-Decreasing (TVI-D). We finally provide numerical evidence supporting the analytical results that exhibit the stabilization properties of the mesh adaptation technique.References
- Ch. Arvanitis and A. I. Delis, Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids, SIAM J. Sci. Comput. 28 (2006), no. 5, 1927–1956. MR 2272195, DOI 10.1137/050632853
- Christos Arvanitis, Theodoros Katsaounis, and Charalambos Makridakis, Adaptive finite element relaxation schemes for hyperbolic conservation laws, M2AN Math. Model. Numer. Anal. 35 (2001), no. 1, 17–33. MR 1811979, DOI 10.1051/m2an:2001105
- Christos Arvanitis, Charalambos Makridakis, and Nikolaos I. Sfakianakis, Entropy conservative schemes and adaptive mesh selection for hyperbolic conservation laws, J. Hyperbolic Differ. Equ. 7 (2010), no. 3, 383–404. MR 2735815, DOI 10.1142/S0219891610002177
- Christos Arvanitis, Charalambos Makridakis, and Athanasios E. Tzavaras, Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 4, 1357–1393. MR 2114282, DOI 10.1137/S0036142902420436
- Christos Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws, J. Sci. Comput. 34 (2008), no. 1, 1–25. MR 2367009, DOI 10.1007/s10915-007-9155-7
- E. Dorfi and L. Drury, Simple adaptive grids for 1d initial value problems, J. Computational Physics 69 (1987), 175–195.
- A. van Dam and P. A. Zegeling, Balanced monitoring of flow phenomena in moving mesh methods, Commun. Comput. Phys. 7 (2010), no. 1, 138–170. MR 2673131, DOI 10.4208/cicp.2009.09.033
- Bengt Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Math. Comp. 51 (1988), no. 184, 699–706. MR 935077, DOI 10.1090/S0025-5718-1988-0935077-0
- Ami Harten and James M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys. 50 (1983), no. 2, 235–269. MR 707200, DOI 10.1016/0021-9991(83)90066-9
- Weizhang Huang and Robert D. Russell, Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174, Springer, New York, 2011. MR 2722625, DOI 10.1007/978-1-4419-7916-2
- Dietmar Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1997. MR 1437144
- Randall J. LeVeque, Numerical methods for conservation laws, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. MR 1153252, DOI 10.1007/978-3-0348-8629-1
- Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. MR 1925043, DOI 10.1017/CBO9780511791253
- P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math. 9 (1956), 267–293. MR 79204, DOI 10.1002/cpa.3160090206
- Bradley J. Lucier, A stable adaptive numerical scheme for hyperbolic conservation laws, SIAM J. Numer. Anal. 22 (1985), no. 1, 180–203. MR 772891, DOI 10.1137/0722012
- Bradley J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), no. 173, 59–69. MR 815831, DOI 10.1090/S0025-5718-1986-0815831-4
- Peter Lax and Burton Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217–237. MR 120774, DOI 10.1002/cpa.3160130205
- N. Sfakianakis, Finite difference schemes on non-uniform meshes for hyperbolic conservation laws, Ph.D. thesis, University of Crete, 2009.
- Huazhong Tang and Tao Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41 (2003), no. 2, 487–515. MR 2004185, DOI 10.1137/S003614290138437X
Bibliographic Information
- Nikolaos Sfakianakis
- Affiliation: University of Vienna, Austria
- Address at time of publication: Johannes Gutenberg University, Mainz, Germany
- Email: sfakiana@uni-mainz.de
- Received by editor(s): September 19, 2009
- Received by editor(s) in revised form: September 2, 2011
- Published electronically: August 16, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 129-151
- MSC (2010): Primary 65--XX
- DOI: https://doi.org/10.1090/S0025-5718-2012-02615-9
- MathSciNet review: 2983018