Implicit–explicit multistep methods for nonlinear parabolic equations
HTML articles powered by AMS MathViewer
- by Georgios Akrivis;
- Math. Comp. 82 (2013), 45-68
- DOI: https://doi.org/10.1090/S0025-5718-2012-02628-7
- Published electronically: July 10, 2012
- PDF | Request permission
Abstract:
Implicit–explicit multistep methods for nonlinear parabolic equations were recently analyzed in [2, 3, 1]. In these papers the linear operator of the equation is assumed to be time-independent, self-adjoint and positive definite; then, the linear part is discretized implicitly and the remaining part explicitly. Here we slightly relax the hypotheses on the linear operator by allowing part of it to be time-dependent or nonself-adjoint. We establish optimal order a priori error estimates.References
- Georgios Akrivis and Michel Crouzeix, Linearly implicit methods for nonlinear parabolic equations, Math. Comp. 73 (2004), no. 246, 613–635. MR 2031397, DOI 10.1090/S0025-5718-03-01573-4
- Georgios Akrivis, Michel Crouzeix, and Charalambos Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp. 67 (1998), no. 222, 457–477. MR 1458216, DOI 10.1090/S0025-5718-98-00930-2
- Georgios Akrivis, Michel Crouzeix, and Charalambos Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999), no. 4, 521–541. MR 1701828, DOI 10.1007/s002110050429
- Georgios Akrivis and Fotini Karakatsani, Modified implicit-explicit BDF methods for nonlinear parabolic equations, BIT 43 (2003), no. 3, 467–483. MR 2026710, DOI 10.1023/B:BITN.0000007057.13132.b3
- Georgios Akrivis and Yiorgos-Sokratis Smyrlis, Linearly implicit schemes for a class of dispersive-dissipative systems, Calcolo 48 (2011), no. 2, 145–172. MR 2796117, DOI 10.1007/s10092-010-0033-6
- Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257–276 (French, with English summary). MR 592157, DOI 10.1007/BF01396412
- Rolf Dieter Grigorieff, Numerik gewöhnlicher Differentialgleichungen. Band 2, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1977 (German). Mehrschrittverfahren; Unter Mitwirkung von Hans Joachim Pfeiffer. MR 657222
- R. D. Grigorieff and J. Schroll, Über $A(\alpha )$-stabile Verfahren hoher Konsistenzordnung, Computing 20 (1978), no. 4, 343–350 (German, with English summary). MR 619908, DOI 10.1007/BF02252382
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 2010. Stiff and differential-algebraic problems; Second revised edition, paperback. MR 2657217, DOI 10.1007/978-3-642-05221-7
- Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. MR 135729
- Willem Hundsdorfer and Steven J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys. 225 (2007), no. 2, 2016–2042. MR 2349693, DOI 10.1016/j.jcp.2007.03.003
- Rolf Jeltsch, Stiff stability and its relation to $A_{0}$- and $A(0)$-stability, SIAM J. Numer. Anal. 13 (1976), no. 1, 8–17. MR 411174, DOI 10.1137/0713002
- W. Liniger, A criterion for $A$-stability of linear multistep integration formulae, Computing (Arch. Elektron. Rechnen) 3 (1968), 280–285 (English, with German summary). MR 239763, DOI 10.1007/bf02235394
- C. Lubich, On the convergence of multistep methods for nonlinear stiff differential equations, Numer. Math. 58 (1991), no. 8, 839–853. MR 1098868, DOI 10.1007/BF01385657
- Syvert P. Nørsett, A criterion for $A(\alpha )$-stability of linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 9 (1969), 259–263. MR 256571, DOI 10.1007/bf01946817
- Giuseppe Savaré, $A(\Theta )$-stable approximations of abstract Cauchy problems, Numer. Math. 65 (1993), no. 3, 319–335. MR 1227025, DOI 10.1007/BF01385755
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
Bibliographic Information
- Georgios Akrivis
- Affiliation: Computer Science Department, University of Ioannina, 451 10 Ioannina, Greece
- MR Author ID: 24080
- Email: akrivis@cs.uoi.gr
- Received by editor(s): April 15, 2011
- Received by editor(s) in revised form: September 12, 2011
- Published electronically: July 10, 2012
- Additional Notes: This work was supported in part by University of Cyprus grant no. 8037P-3/311-21028.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 45-68
- MSC (2010): Primary 65M12, 65M60; Secondary 65L06
- DOI: https://doi.org/10.1090/S0025-5718-2012-02628-7
- MathSciNet review: 2983015