On exponential convergence of Gegenbauer interpolation and spectral differentiation
HTML articles powered by AMS MathViewer
- by Ziqing Xie, Li-Lian Wang and Xiaodan Zhao;
- Math. Comp. 82 (2013), 1017-1036
- DOI: https://doi.org/10.1090/S0025-5718-2012-02645-7
- Published electronically: August 21, 2012
- PDF | Request permission
Abstract:
This paper is devoted to a rigorous analysis of exponential convergence of polynomial interpolation and spectral differentiation based on the Gegenbauer-Gauss and Gegenbauer-Gauss-Lobatto points, when the underlying function is analytic on and within an ellipse. Sharp error estimates in the maximum norm are derived.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Ivo Babuška and Benqi Guo, Direct and inverse approximation theorems for the $p$-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1512–1538. MR 1885705, DOI 10.1137/S0036142901356551
- Christine Bernardi, Monique Dauge, and Yvon Maday, Spectral methods for axisymmetric domains, Series in Applied Mathematics (Paris), vol. 3, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam, 1999. Numerical algorithms and tests due to Mejdi Azaïez. MR 1693480
- Christine Bernardi and Yvon Maday, Spectral methods, Handbook of numerical analysis, Vol. V, Handb. Numer. Anal., V, North-Holland, Amsterdam, 1997, pp. 209–485. MR 1470226, DOI 10.1016/S1570-8659(97)80003-8
- John P. Boyd, The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-mapping for pseudospectral computations on an infinite interval, J. Comput. Phys. 110 (1994), no. 2, 360–372. MR 1267887, DOI 10.1006/jcph.1994.1032
- John P. Boyd, Chebyshev and Fourier spectral methods, 2nd ed., Dover Publications, Inc., Mineola, NY, 2001. MR 1874071
- John P. Boyd, Trouble with Gegenbauer reconstruction for defeating Gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys. 204 (2005), no. 1, 253–264. MR 2121910, DOI 10.1016/j.jcp.2004.10.008
- C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, Scientific Computation, Springer-Verlag, Berlin, 2006. Fundamentals in single domains. MR 2223552
- Yanping Chen and Tao Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp. 79 (2010), no. 269, 147–167. MR 2552221, DOI 10.1090/S0025-5718-09-02269-8
- Philip J. Davis, Interpolation and approximation, Dover Publications, Inc., New York, 1975. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. MR 380189
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- E. H. Doha, The ultraspherical coefficients of the moments of a general-order derivative of an infinitely differentiable function, J. Comput. Appl. Math. 89 (1998), no. 1, 53–72. MR 1625979, DOI 10.1016/S0377-0427(97)00228-8
- E. H. Doha and A. H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials, Numer. Algorithms 42 (2006), no. 2, 137–164. MR 2262512, DOI 10.1007/s11075-006-9034-6
- Eid H. Doha and Ali H. Bhrawy, A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations, Numer. Methods Partial Differential Equations 25 (2009), no. 3, 712–739. MR 2510756, DOI 10.1002/num.20369
- E. H. Doha, A. H. Bhrawy, and W. M. Abd-Elhameed, Jacobi spectral Galerkin method for elliptic Neumann problems, Numer. Algorithms 50 (2009), no. 1, 67–91. MR 2487228, DOI 10.1007/s11075-008-9216-5
- Moshe Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), no. 4, 345–390. MR 1154903, DOI 10.1007/BF01060030
- David Elliott, Uniform asymptotic expansions of the Jacobi polynomials and an associated function, Math. Comp. 25 (1971), 309–315. MR 294737, DOI 10.1090/S0025-5718-1971-0294737-5
- Bengt Fornberg, A practical guide to pseudospectral methods, Cambridge Monographs on Applied and Computational Mathematics, vol. 1, Cambridge University Press, Cambridge, 1996. MR 1386891, DOI 10.1017/CBO9780511626357
- Daniele Funaro, Polynomial approximation of differential equations, Lecture Notes in Physics. New Series m: Monographs, vol. 8, Springer-Verlag, Berlin, 1992. MR 1176949
- A. Gelb and Z. Jackiewicz, Determining analyticity for parameter optimization of the Gegenbauer reconstruction method, SIAM J. Sci. Comput. 27 (2005), no. 3, 1014–1031. MR 2199918, DOI 10.1137/040603814
- David Gottlieb and Steven A. Orszag, Numerical analysis of spectral methods: theory and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1977. MR 520152
- David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon. IV. Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function, Math. Comp. 64 (1995), no. 211, 1081–1095. MR 1284667, DOI 10.1090/S0025-5718-1995-1284667-0
- David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon. V. Recovering exponential accuracy from collocation point values of a piecewise analytic function, Numer. Math. 71 (1995), no. 4, 511–526. MR 1355052, DOI 10.1007/s002110050155
- David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon. III. Recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function, SIAM J. Numer. Anal. 33 (1996), no. 1, 280–290. MR 1377254, DOI 10.1137/0733015
- David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997), no. 4, 644–668. MR 1491051, DOI 10.1137/S0036144596301390
- David Gottlieb, Chi-Wang Shu, Alex Solomonoff, and Hervé Vandeven, On the Gibbs phenomenon. I. Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math. 43 (1992), no. 1-2, 81–98. Orthogonal polynomials and numerical methods. MR 1193295, DOI 10.1016/0377-0427(92)90260-5
- B.Q. Guo, Mathematical Foundation and Applications of the $p$ and $h$-$p$ Finite Element Methods, Series in Analysis, vol. 4, World Scientific, 2011.
- Ben-yu Guo, Gegenbauer approximation and its applications to differential equations with rough asymptotic behaviors at infinity, Appl. Numer. Math. 38 (2001), no. 4, 403–425. MR 1852266, DOI 10.1016/S0168-9274(01)00039-3
- Guo Ben-yu and Wang Li-lian, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math. 14 (2001), no. 3, 227–276. MR 1845244, DOI 10.1023/A:1016681018268
- Ben-yu Guo and Li-lian Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory 128 (2004), no. 1, 1–41. MR 2063010, DOI 10.1016/j.jat.2004.03.008
- Bertil Gustafsson, The work of David Gottlieb: a success story, Commun. Comput. Phys. 9 (2011), no. 3, 481–496. MR 2726814, DOI 10.4208/cicp.010110.010310s
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- George Em Karniadakis and Spencer J. Sherwin, Spectral/$hp$ element methods for computational fluid dynamics, 2nd ed., Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. MR 2165335, DOI 10.1093/acprof:oso/9780198528692.001.0001
- Ilia Krasikov, An upper bound on Jacobi polynomials, J. Approx. Theory 149 (2007), no. 2, 116–130. MR 2374601, DOI 10.1016/j.jat.2007.04.008
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1937591
- Paul Nevai, Tamás Erdélyi, and Alphonse P. Magnus, Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), no. 2, 602–614. MR 1266580, DOI 10.1137/S0036141092236863
- S. C. Reddy and J. A. C. Weideman, The accuracy of the Chebyshev differencing method for analytic functions, SIAM J. Numer. Anal. 42 (2005), no. 5, 2176–2187. MR 2139243, DOI 10.1137/040603280
- Theodore J. Rivlin, Chebyshev polynomials, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR 1060735
- J. Shen, T. Tang, and L.L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Series in Computational Mathematics, vol. 41, Springer-Verlag, Berlin, Heidelberg, 2011.
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- Eitan Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal. 23 (1986), no. 1, 1–10. MR 821902, DOI 10.1137/0723001
- Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 1776072, DOI 10.1137/1.9780898719598
- Lloyd N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50 (2008), no. 1, 67–87. MR 2403058, DOI 10.1137/060659831
- Haiyong Wang and Shuhuang Xiang, On the convergence rates of Legendre approximation, Math. Comp. 81 (2012), no. 278, 861–877. MR 2869040, DOI 10.1090/S0025-5718-2011-02549-4
- Zhong-Qing Wang and Ben-Yu Guo, Jacobi rational approximation and spectral method for differential equations of degenerate type, Math. Comp. 77 (2008), no. 262, 883–907. MR 2373184, DOI 10.1090/S0025-5718-07-02074-1
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
- Zhimin Zhang, Superconvergence of spectral collocation and $p$-version methods in one dimensional problems, Math. Comp. 74 (2005), no. 252, 1621–1636. MR 2164089, DOI 10.1090/S0025-5718-05-01756-4
- Zhimin Zhang, Superconvergence of a Chebyshev spectral collocation method, J. Sci. Comput. 34 (2008), no. 3, 237–246. MR 2377618, DOI 10.1007/s10915-007-9163-7
Bibliographic Information
- Ziqing Xie
- Affiliation: School of Mathematics and Computer Science, Guizhou Normal University, Guiyang, Guizhou 550001, China — and — Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, China
- Email: ziqingxie@yahoo.com.cn
- Li-Lian Wang
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- MR Author ID: 681795
- Email: lilian@ntu.edu.sg
- Xiaodan Zhao
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- Email: zhao0122@e.ntu.edu.sg
- Received by editor(s): January 12, 2011
- Received by editor(s) in revised form: August 18, 2011, and October 9, 2011
- Published electronically: August 21, 2012
- Additional Notes: The research of the first author is partially supported by the NSFC (11171104, 10871066) and the Science and Technology Grant of Guizhou Province (LKS[2010]05)
The research of the second and third authors is partially supported by Singapore AcRF Tier 1 Grant RG58/08 - © Copyright 2012 American Mathematical Society
- Journal: Math. Comp. 82 (2013), 1017-1036
- MSC (2010): Primary 65N35, 65E05, 65M70, 41A05, 41A10, 41A25
- DOI: https://doi.org/10.1090/S0025-5718-2012-02645-7
- MathSciNet review: 3008847