Generators of rational spectral transformations for nontrivial $\mathcal {C}$-functions
HTML articles powered by AMS MathViewer
- by Kenier Castillo and Francisco Marcellán;
- Math. Comp. 82 (2013), 1057-1068
- DOI: https://doi.org/10.1090/S0025-5718-2012-02655-X
- Published electronically: November 28, 2012
- PDF | Request permission
Abstract:
In this paper we consider transformations of sequences of orthogonal polynomials associated with a Hermitian linear functional $\mathcal {L}$ using spectral transformations of the corresponding $\mathcal {C}$-function $F_{\mathcal {L}}$. We show that a rational spectral transformation of $F_{\mathcal {L}}$ with polynomial coefficients is a finite composition of four canonical spectral transformations.References
- M. J. Cantero, L. Moral, and L. Velázquez, Direct and inverse polynomial perturbations of Hermitian linear functionals, J. Approx. Theory 163 (2011), no. 8, 988–1028. MR 2832761, DOI 10.1016/j.jat.2011.02.014
- C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI 10.1007/BF01449883
- K. Castillo, L. Garza, and F. Marcellán, A new linear spectral transformation associated with derivatives of Dirac linear functionals, J. Approx. Theory 163 (2011), 1834–1853.
- Kenier Castillo, Luis Garza, and Francisco Marcellán, Laurent polynomial perturbations of linear functionals. An inverse problem, Electron. Trans. Numer. Anal. 36 (2009/10), 83–98. MR 2779999
- K. Castillo, L. Garza, and F. Marcellán, Perturbations on the subdiagonals of Toeplitz matrices, Linear Algebra Appl. 434 (2011), no. 6, 1563–1579. MR 2775766, DOI 10.1016/j.laa.2010.11.037
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 481884
- Leyla Daruis, Javier Hernández, and Francisco Marcellán, Spectral transformations for Hermitian Toeplitz matrices, J. Comput. Appl. Math. 202 (2007), no. 2, 155–176. MR 2319946, DOI 10.1016/j.cam.2006.02.041
- Luis Garza, Javier Hernández, and Francisco Marcellán, Spectral transformations of measures supported on the unit circle and the Szegő transformation, Numer. Algorithms 49 (2008), no. 1-4, 169–185. MR 2457097, DOI 10.1007/s11075-008-9156-0
- L. Garza, J. Hernández, and F. Marcellán, Orthogonal polynomials and measures on the unit circle. The Geronimus transformations, J. Comput. Appl. Math. 233 (2010), no. 5, 1220–1231. MR 2559359, DOI 10.1016/j.cam.2007.11.023
- Luis Garza and Francisco Marcellán, Linear spectral transformations and Laurent polynomials, Mediterr. J. Math. 6 (2009), no. 3, 273–289. MR 2551677, DOI 10.1007/s00009-009-0008-5
- J. Geronimus, On the trigonometric moment problem, Ann. of Math. (2) 47 (1946), 742–761. MR 18265, DOI 10.2307/1969232
- Ya. L. Geronimus, Orthogonal polynomials (English translation of the appendix to Russian translation of Szegő book \cite{S59}) Fizmatgiz, 1961, in: Two Paper on Special Fuctions, Amer. Math. Soc. Transl. Ser. 2, 108, Amer. Math. Soc., Providence, RI (1977), 37–130.
- Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation 1954 (1954), no. 104, 79. MR 61706
- Eduardo Godoy and Francisco Marcellán, An analog of the Christoffel formula for polynomial modification of a measure on the unit circle, Boll. Un. Mat. Ital. A (7) 5 (1991), no. 1, 1–12 (English, with Italian summary). MR 1101005
- E. Godoy and F. Marcellán, Orthogonal polynomials and rational modifications of measures, Canad. J. Math. 45 (1993), no. 5, 930–943. MR 1239908, DOI 10.4153/CJM-1993-052-1
- Ulf Grenander and Gábor Szegő, Toeplitz forms and their applications, 2nd ed., Chelsea Publishing Co., New York, 1984. MR 890515
- G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, Ber. Ver. Ges. wiss Leipzig 63 (1911), 501–511.
- F. Marcellán, J. S. Dehesa, and A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math. 30 (1990), no. 2, 203–212. MR 1062324, DOI 10.1016/0377-0427(90)90028-X
- Francisco Marcellán and Renato Álvarez-Nodarse, On the “Favard theorem” and its extensions, J. Comput. Appl. Math. 127 (2001), no. 1-2, 231–254. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808576, DOI 10.1016/S0377-0427(00)00497-0
- F. Marcellán and G. Sansigre, Orthogonal polynomials on the unit circle: symmetrization and quadratic decomposition, J. Approx. Theory 65 (1991), no. 1, 109–119. MR 1098834, DOI 10.1016/0021-9045(91)90115-Q
- F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. 12 (1996), no. 2, 161–185. MR 1393285, DOI 10.1007/s003659900008
- Franz Peherstorfer, Finite perturbations of orthogonal polynomials, J. Comput. Appl. Math. 44 (1992), no. 3, 275–302. MR 1199259, DOI 10.1016/0377-0427(92)90002-F
- Franz Peherstorfer and Robert Steinbauer, Characterization of orthogonal polynomials with respect to a functional, Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994), 1995, pp. 339–355. MR 1379142, DOI 10.1016/0377-0427(95)00125-5
- Frédéric Riesz, Sur certains systèmes singuliers d’équations intégrales, Ann. Sci. École Norm. Sup. (3) 28 (1911), 33–62 (French). MR 1509135
- B. Simon, Orthogonal polynomials on the unit circle, Amer. Math. Soc. Colloq. Publ., 54, Amer. Math. Soc. Providence, RI, 2005.
- C. Suárez, Polinomios ortogonales relativos a modificaciones de funcionales regulares y hermitianos, Doctoral Dissertation, Departamento de Matemática Aplicada, Universidad de Vigo, 1993. In Spanish.
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- Alexei Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 (1997), no. 1, 67–86. MR 1482157, DOI 10.1016/S0377-0427(97)00130-1
Bibliographic Information
- Kenier Castillo
- Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés-Madrid, Spain
- MR Author ID: 924654
- Email: kcastill@math.uc3m.es
- Francisco Marcellán
- Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés-Madrid, Spain
- Email: pacomarc@ing.uc3m.es
- Received by editor(s): August 31, 2011
- Published electronically: November 28, 2012
- Additional Notes: The work of the authors was supported by Dirección General de Investigación, Ministerio de Ciencia e Innovación of Spain, grant MTM2009-12740-C03-01.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 1057-1068
- MSC (2010): Primary 42C05
- DOI: https://doi.org/10.1090/S0025-5718-2012-02655-X
- MathSciNet review: 3008849