Error estimates for Galerkin approximations of the “classical” Boussinesq system
HTML articles powered by AMS MathViewer
- by D. C. Antonopoulos and V. A. Dougalis;
- Math. Comp. 82 (2013), 689-717
- DOI: https://doi.org/10.1090/S0025-5718-2012-02663-9
- Published electronically: December 12, 2012
- PDF | Request permission
Abstract:
We consider the “classical” Boussinesq system in one space dimension and its symmetric analog. These systems model two-way propagation of nonlinear, dispersive long waves of small amplitude on the surface of an ideal fluid in a uniform horizontal channel. We discretize an initial-boundary-value problem for these systems in space using Galerkin-finite element methods and prove error estimates for the resulting semidiscrete problems and also for their fully discrete analogs effected by explicit Runge-Kutta time-stepping procedures. The theoretical orders of convergence obtained are consistent with the results of numerical experiments that are also presented.References
- Karine Adamy, Existence of solutions for a Boussinesq system on the half line and on a finite interval, Discrete Contin. Dyn. Syst. 29 (2011), no. 1, 25–49. MR 2725279, DOI 10.3934/dcds.2011.29.25
- Charles J. Amick, Regularity and uniqueness of solutions to the Boussinesq system of equations, J. Differential Equations 54 (1984), no. 2, 231–247. MR 757294, DOI 10.1016/0022-0396(84)90160-8
- D.C. Antonopoulos, The Boussinesq system of equations: Theory and numerical analysis, Ph.D. Thesis, University of Athens, 2000 (In Greek).
- D. C. Antonopoulos and V. A. Dougalis, Numerical solution of the ‘classical’ Boussinesq system, Math. Comput. Simulation 82 (2012), no. 6, 984–1007. MR 2903340, DOI 10.1016/j.matcom.2011.09.006
- D. C. Antonopoulos and V. A. Dougalis, Numerical approximations of Boussinesq systems, Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000) SIAM, Philadelphia, PA, 2000, pp. 265–269. MR 1785905
- D.C. Antonopoulos and V.A. Dougalis, Notes on error estimates for Galerkin approximations of the “classical” Boussinesq system and related hyperbolic problems, arXiv:1008.4248.
- D. C. Antonopoulos, V. A. Dougalis, and D. E. Mitsotakis, Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems, Adv. Differential Equations 14 (2009), no. 1-2, 27–53. MR 2478928
- D. C. Antonopoulos, V. A. Dougalis, and D. E. Mitsotakis, Numerical solution of Boussinesq systems of the Bona-Smith family, Appl. Numer. Math. 60 (2010), no. 4, 314–336. MR 2607793, DOI 10.1016/j.apnum.2009.03.002
- D.C. Antonopoulos, V.A. Dougalis, and D.E. Mitsotakis, Galerkin approximations of periodic solutions of Boussinesq systems, Bull. Greek Math. Soc. 57(2010), 13–30.
- Jerry L. Bona and Min Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves, Phys. D 116 (1998), no. 1-2, 191–224. MR 1621920, DOI 10.1016/S0167-2789(97)00249-2
- J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci. 12 (2002), no. 4, 283–318. MR 1915939, DOI 10.1007/s00332-002-0466-4
- J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory, Nonlinearity 17 (2004), no. 3, 925–952. MR 2057134, DOI 10.1088/0951-7715/17/3/010
- Jerry L. Bona, Thierry Colin, and David Lannes, Long wave approximations for water waves, Arch. Ration. Mech. Anal. 178 (2005), no. 3, 373–410. MR 2196497, DOI 10.1007/s00205-005-0378-1
- J. L. Bona, V. A. Dougalis, and D. E. Mitsotakis, Numerical solution of KdV-KdV systems of Boussinesq equations. I. The numerical scheme and generalized solitary waves, Math. Comput. Simulation 74 (2007), no. 2-3, 214–228. MR 2307859, DOI 10.1016/j.matcom.2006.10.004
- J. L. Bona, V. A. Dougalis, and D. E. Mitsotakis, Numerical solution of Boussinesq systems of KdV-KdV type. II. Evolution of radiating solitary waves, Nonlinearity 21 (2008), no. 12, 2825–2848. MR 2461042, DOI 10.1088/0951-7715/21/12/006
- V. A. Dougalis, A. Durán, M. A. López-Marcos, and D. E. Mitsotakis, A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems, J. Nonlinear Sci. 17 (2007), no. 6, 569–607. MR 2371147, DOI 10.1007/s00332-007-9004-8
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475–483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0
- Todd Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal. 10 (1973), 890–899. MR 349046, DOI 10.1137/0710074
- A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems, Math. Phys. Anal. Geom. 8 (2005), no. 1, 59–96. MR 2136653, DOI 10.1007/s11040-004-1650-6
- Beatrice Pelloni, Spectral methods for the numerical solution of nonlinear dispersive wave equations, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–Yale University. MR 2695225
- Beatrice Pelloni and Vassilios A. Dougalis, Numerical modelling of two-way propagation of non-linear dispersive waves, Math. Comput. Simulation 55 (2001), no. 4-6, 595–606. Nonlinear waves: computation and theory (Athens, GA, 1999). MR 1831398, DOI 10.1016/S0378-4754(00)00305-0
- D.H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech. 25(1966), 321–331.
- D.H. Peregrine, Long waves on a beach, J. Fluid Mech. 27(1967), 815–827.
- D.H. Peregrine, Equations for water waves and the approximations behind them, in Waves on Beaches and Resulting Sediment Transport, R.E. Meyer ed., Academic Press, New York 1972, pp. 95–121.
- Maria Elena Schonbek, Existence of solutions for the Boussinesq system of equations, J. Differential Equations 42 (1981), no. 3, 325–352. MR 639225, DOI 10.1016/0022-0396(81)90108-X
- Robert Schreiber, Finite element methods of high-order accuracy for singular two-point boundary value problems with nonsmooth solutions, SIAM J. Numer. Anal. 17 (1980), no. 4, 547–566. MR 584730, DOI 10.1137/0717047
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170, DOI 10.1007/978-3-662-03359-3
- Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050, DOI 10.1007/BFb0096835
- G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 483954
Bibliographic Information
- D. C. Antonopoulos
- Affiliation: Department of Mathematics, University of Athens, 15784 Zographou, Greece
- MR Author ID: 670004
- Email: antonod@math.uoa.gr
- V. A. Dougalis
- Affiliation: Department of Mathematics, University of Athens, 15784 Zographou, Greece – and – Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Greece
- MR Author ID: 59415
- Email: doug@math.uoa.gr
- Received by editor(s): August 26, 2010
- Received by editor(s) in revised form: October 6, 2011
- Published electronically: December 12, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 689-717
- MSC (2010): Primary 65M60, 35Q53
- DOI: https://doi.org/10.1090/S0025-5718-2012-02663-9
- MathSciNet review: 3008835