Algorithms for the arithmetic of elliptic curves using Iwasawa theory
HTML articles powered by AMS MathViewer
- by William Stein and Christian Wuthrich;
- Math. Comp. 82 (2013), 1757-1792
- DOI: https://doi.org/10.1090/S0025-5718-2012-02649-4
- Published electronically: September 14, 2012
Abstract:
We explain how to use results from Iwasawa theory to obtain information about $p$-parts of Tate-Shafarevich groups of specific elliptic curves over $\mathbb {Q}$. Our method provides a practical way to compute $\#\Sha (E/\mathbb {Q})(p)$ in many cases when traditional $p$-descent methods are completely impractical and also in situations where results of Kolyvagin do not apply, e.g., when the rank of the Mordell-Weil group is greater than 1. We apply our results along with a computer calculation to show that $\Sha (E/\mathbb {Q})[p]=0$ for the 1,534,422 pairs $(E,p)$ consisting of a non-CM elliptic curve $E$ over $\mathbb {Q}$ with conductor $\leq 30{,}000$, rank $\geq 2$, and good ordinary primes $p$ with $5 \leq p < 1000$ and surjective mod-$p$ representation.References
- Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 617â636. MR 2251484, DOI 10.4310/PAMQ.2006.v2.n2.a11
- Amod Agashe and William Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171â185. MR 1939144, DOI 10.1006/jnth.2002.2810
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843â939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235â265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Dominique Bernardi, Hauteur $p$-adique sur les courbes elliptiques, Seminar on Number Theory, Paris 1979â80, Progr. Math., vol. 12, BirkhĂ€user, Boston, MA, 1981, pp. 1â14 (French). MR 633886
- Daniel Bertrand, Valuers de fonctions thĂȘta et hauteur $p$-adiques, Seminar on Number Theory, Paris 1980-81, Progr. Math., vol. 22, BirkhĂ€user Boston, 1982, pp. 1â11.
- Dominique Bernardi and Bernadette Perrin-Riou, Variante $p$-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris SĂ©r. I Math. 317 (1993), no. 3, 227â232 (French, with English and French summaries). MR 1233417
- Katia BarrĂ©-Sirieix, Guy Diaz, François Gramain, and Georges Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), no. 1-3, 1â9 (French). MR 1369409, DOI 10.1007/s002220050044
- J. W. S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180â199. MR 179169, DOI 10.1515/crll.1965.217.180
- J. E. Cremona, T. A. Fisher, C. OâNeil, D. Simon, and M. Stoll, Explicit $n$-descent on elliptic curves. I. Algebra, J. Reine Angew. Math. 615 (2008), 121â155. MR 2384334, DOI 10.1515/CRELLE.2008.012
- J. E. Cremona, T. A. Fisher, C. OâNeil, D. Simon, and M. Stoll, Explicit $n$-descent on elliptic curves. II. Geometry, J. Reine Angew. Math. 632 (2009), 63â84. MR 2544143, DOI 10.1515/CRELLE.2009.050
- â, Explicit n-descent on elliptic curves. III. Algorithms, Preprint. http://arxiv.org/abs/1107.3516, 2011.
- J. Coates, Z. Liang, and R. Sujatha, The Tate-Shafarevich group for elliptic curves with complex multiplication, J. Algebra 322 (2009), no. 3, 657â674. MR 2531216, DOI 10.1016/j.jalgebra.2009.04.039
- J. Coates, Z. Liang, and R. Sujatha, The Tate-Shafarevich group for elliptic curves with complex multiplication II, Milan J. Math. 78 (2010), no. 2, 395â416. MR 2781846, DOI 10.1007/s00032-010-0127-2
- John Coates, The enigmatic Tate-Shafarevich group, Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1, vol. 2, Amer. Math. Soc., Providence, RI, 2012, pp. 43â50. MR 2908059
- Henri Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007. MR 2312338
- Pierre Colmez, La conjecture de Birch et Swinnerton-Dyer $p$-adique, AstĂ©risque 294 (2004), ix, 251â319 (French, with French summary). MR 2111647
- Pierre Colmez, Invariants $\scr L$ et dĂ©rivĂ©es de valeurs propres de Frobenius, AstĂ©risque 331 (2010), 13â28 (French, with English and French summaries). MR 2667885
- J. E. Cremona, Elliptic Curves Data, http://www.warwick.ac.uk/~masgaj/ftp/data/INDEX.html.
- J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193
- J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 88, Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, 2000. MR 1759312
- Daniel Delbourgo, Iwasawa theory for elliptic curves at unstable primes, Compositio Math. 113 (1998), no. 2, 123â153. MR 1639179, DOI 10.1023/A:1000408925932
- Daniel Delbourgo, On the $p$-adic Birch, Swinnerton-Dyer conjecture for non-semistable reduction, J. Number Theory 95 (2002), no. 1, 38â71. MR 1916079, DOI 10.1006/jnth.2001.2755
- Tim Dokchitser, Computing special values of motivic $L$-functions, Experiment. Math. 13 (2004), no. 2, 137â149. MR 2068888
- Bas Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, BirkhĂ€user Boston, Boston, MA, 1991, pp. 25â39. MR 1085254, DOI 10.1007/978-1-4612-0457-2_{3}
- Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina TarniĆŁÇ, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp. 78 (2009), no. 268, 2397â2425. MR 2521294, DOI 10.1090/S0025-5718-09-02253-4
- Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51â144. MR 1754686, DOI 10.1007/BFb0093453
- Ralph Greenberg, Introduction to Iwasawa theory for elliptic curves, Arithmetic algebraic geometry (Park City, UT, 1999) IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 407â464. MR 1860044, DOI 10.1090/pcms/009/06
- Grigor Tsankov Grigorov, Katoâs Euler System and the Main Conjecture, Ph.D. thesis, Harvard University, 2005.
- Ralph Greenberg and Glenn Stevens, $p$-adic $L$-functions and $p$-adic periods of modular forms, Invent. Math. 111 (1993), no. 2, 407â447. MR 1198816, DOI 10.1007/BF01231294
- Ralph Greenberg and Vinayak Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), no. 1, 17â63. MR 1784796, DOI 10.1007/s002220000080
- David Harvey, Efficient computation of $p$-adic heights, LMS J. Comput. Math. 11 (2008), 40â59. MR 2395362, DOI 10.1112/S1461157000000528
- John W. Jones, Iwasawa $L$-functions for multiplicative abelian varieties, Duke Math. J. 59 (1989), no. 2, 399â420. MR 1016896, DOI 10.1215/S0012-7094-89-05918-8
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, AstĂ©risque 295 (2004), ix, 117â290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmĂ©tiques. III. MR 2104361
- Kiran S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323â338. MR 1877805
- Kiran S. Kedlaya, Errata for: âCounting points on hyperelliptic curves using Monsky-Washnitzer cohomologyâ [J. Ramanujan Math. Soc. 16 (2001), no. 4, 323â338; MR1877805], J. Ramanujan Math. Soc. 18 (2003), no. 4, 417â418. Dedicated to Professor K. S. Padmanabhan. MR 2043934
- Kiran S. Kedlaya, Computing zeta functions via $p$-adic cohomology, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 1â17. MR 2137340, DOI 10.1007/978-3-540-24847-7_{1}
- Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1â36. MR 1965358, DOI 10.1007/s00222-002-0265-4
- Shinichi Kobayashi, An elementary proof of the Mazur-Tate-Teitelbaum conjecture for elliptic curves, Doc. Math. Extra Vol. (2006), 567â575. MR 2290598
- V. A. Kolyvagin, On the structure of Shafarevich-Tate groups, Algebraic geometry (Chicago, IL, 1989) Lecture Notes in Math., vol. 1479, Springer, Berlin, 1991, pp. 94â121. MR 1181210, DOI 10.1007/BFb0086267
- V. A. Kolyvagin, On the structure of Selmer groups, Math. Ann. 291 (1991), no. 2, 253â259. MR 1129365, DOI 10.1007/BF01445205
- Masato Kurihara and Robert Pollack, Two $p$-adic $L$-functions and rational points on elliptic curves with supersingular reduction, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 300â332. MR 2392358, DOI 10.1017/CBO9780511721267.009
- Ju. I. Manin, Cyclotomic fields and modular curves, Uspehi Mat. Nauk 26 (1971), no. 6(162), 7â71 (Russian). MR 401653
- Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19â66 (Russian). MR 314846
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183â266. MR 444670, DOI 10.1007/BF01389815
- Robert L. Miller, Empirical evidence for the Birch and Swinnerton-Dyer conjecture, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)âUniversity of Washington. MR 2801688
- B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1â61. MR 354674, DOI 10.1007/BF01389997
- Barry Mazur, William Stein, and John Tate, Computation of $p$-adic heights and log convergence, Doc. Math. Extra Vol. (2006), 577â614. MR 2290599
- B. Mazur and J. Tate, The $p$-adic sigma function, Duke Math. J. 62 (1991), no. 3, 663â688. MR 1104813, DOI 10.1215/S0012-7094-91-06229-0
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1â48. MR 830037, DOI 10.1007/BF01388731
- The PARI Group, Bordeaux, PARI/GP, version 2.5, 2011, available from http://pari.math.u-bordeaux.fr/.
- Robert Pollack, Tables of Iwasawa invariants of elliptic curves, http://math.bu.edu/people/rpollack/Data/data.html.
- Robert Pollack, On the $p$-adic $L$-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523â558. MR 1983040, DOI 10.1215/S0012-7094-03-11835-9
- Bernadette Perrin-Riou, Descente infinie et hauteur $p$-adique sur les courbes elliptiques Ă multiplication complexe, Invent. Math. 70 (1982/83), no. 3, 369â398 (French). MR 683689, DOI 10.1007/BF01391797
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques, thĂ©orie dâIwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399â456 (French, with English summary). MR 928018
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques dâune courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 945â995 (French, with English and French summaries). MR 1252935, DOI 10.5802/aif.1362
- Bernadette Perrin-Riou, ThĂ©orie dâIwasawa des reprĂ©sentations $p$-adiques sur un corps local, Invent. Math. 115 (1994), no. 1, 81â161 (French). With an appendix by Jean-Marc Fontaine. MR 1248080, DOI 10.1007/BF01231755
- Bernadette Perrin-Riou, ArithmĂ©tique des courbes elliptiques Ă rĂ©duction supersinguliĂšre en $p$, Experiment. Math. 12 (2003), no. 2, 155â186 (French, with English and French summaries). MR 2016704
- Robert Pollack and Karl Rubin, The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math. (2) 159 (2004), no. 1, 447â464. MR 2052361, DOI 10.4007/annals.2004.159.447
- Robert Pollack and Glenn Stevens, Overconvergent modular symbols and $p$-adic $L$-functions, Ann. Sci. Ăc. Norm. SupĂ©r. (4) 44 (2011), no. 1, 1â42 (English, with English and French summaries). MR 2760194, DOI 10.24033/asens.2139
- David E. Rohrlich, On $L$-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), no. 3, 409â423. MR 735333, DOI 10.1007/BF01388636
- M. Gontcharoff, Sur quelques sĂ©ries dâinterpolation gĂ©nĂ©ralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17â48 (Russian, with French summary). MR 2002
- Karl Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 167â234. MR 1754688, DOI 10.1007/BFb0093455
- Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study. MR 1749177, DOI 10.1515/9781400865208
- W. A. Stein et al., Psage Library, 2011, http://code.google.com/p/purplesage/.
- â, Sage Mathematics Software (Version 4.6.2), The Sage Development Team, 2011, http://www.sagemath.org.
- Peter Schneider, $p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401â409. MR 679765, DOI 10.1007/BF01389362
- Peter Schneider, $p$-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329â374. MR 778132, DOI 10.1007/BF01388978
- Jean-Pierre Serre, PropriĂ©tĂ©s galoisiennes des points dâordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259â331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Travaux de Wiles (et Taylor, $\ldots$). I, AstĂ©risque 237 (1996), Exp. No. 803, 5, 319â332 (French, with French summary). SĂ©minaire Bourbaki, Vol. 1994/95. MR 1423630
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- Denis Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7â17. MR 1916919, DOI 10.1112/S1461157000000668
- Edward F. Schaefer and Michael Stoll, How to do a $p$-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), no. 3, 1209â1231. MR 2021618, DOI 10.1090/S0002-9947-03-03366-X
- William Stein, The Birch and Swinnerton-Dyer Conjecture, a Computational Approach, 2007, http://wstein.org/books/bsd/.
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- C. Skinner and D. Urban, The Iwasawa Main Conjecture for $\textrm {GL}_2$, http://www.math.columbia.edu/\%7Eurban/eurp/MC.pdf.
- Annette Werner, Local heights on abelian varieties and rigid analytic uniformization, Doc. Math. 3 (1998), 301â319. MR 1662481
- Andrew Wiles, Modular elliptic curves and Fermatâs last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443â551. MR 1333035, DOI 10.2307/2118559
- Christian Wuthrich, On $p$-adic heights in families of elliptic curves, J. London Math. Soc. (2) 70 (2004), no. 1, 23â40. MR 2064750, DOI 10.1112/S0024610704005277
- Christian Wuthrich, Iwasawa theory of the fine Selmer group, J. Algebraic Geom. 16 (2007), no. 1, 83â108. MR 2257321, DOI 10.1090/S1056-3911-06-00436-X
Bibliographic Information
- William Stein
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington
- MR Author ID: 679996
- Email: wstein@uw.edu
- Christian Wuthrich
- Affiliation: School of Mathematical Sciences, University of Nottingham, University Park Nottingham NG7 2RD, United Kingdom
- MR Author ID: 681572
- Email: christian.wuthrich@nottingham.ac.uk
- Received by editor(s): July 4, 2011
- Received by editor(s) in revised form: November 11, 2011
- Published electronically: September 14, 2012
- Additional Notes: The first author was supported by NSF grants DMS-0555776 and DMS-0821725.
- © Copyright 2012 William Stein and Christian Wuthrich
- Journal: Math. Comp. 82 (2013), 1757-1792
- MSC (2010): Primary 11D88, 11G05, 11G40, 11G50, 14G05; Secondary 11Y50, 11Y40, 14G10
- DOI: https://doi.org/10.1090/S0025-5718-2012-02649-4
- MathSciNet review: 3042584