New results on reverse order law for $\{1,2,3\}$- and $\{1,2,4\}$-inverses of bounded operators
HTML articles powered by AMS MathViewer
- by Xiaoji Liu, Shuxia Wu and Dragana Cvetković-Ilić;
- Math. Comp. 82 (2013), 1597-1607
- DOI: https://doi.org/10.1090/S0025-5718-2013-02660-9
- Published electronically: January 11, 2013
- PDF | Request permission
Abstract:
In this paper, using some block-operator matrix techniques, we give necessary and sufficient conditions for the reverse order law to hold for $\{1,2,3\}$- and $\{1,2,4\}$-inverses of bounded operators on Hilbert spaces. Furthermore, we present some new equivalents of the reverse order law for the Moore-Penrose inverse.References
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses, 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15, Springer-Verlag, New York, 2003. Theory and applications. MR 1987382
- Dragana S. Cvetković-Ilić and Robin Harte, Reverse order laws in $C^*$-algebras, Linear Algebra Appl. 434 (2011), no. 5, 1388–1394. MR 2763596, DOI 10.1016/j.laa.2010.11.022
- Dragana S. Cvetković-Ilić, Reverse order laws for $\{1,3,4\}$-generalized inverses in $C^\ast$-algebras, Appl. Math. Lett. 24 (2011), no. 2, 210–213. MR 2735143, DOI 10.1016/j.aml.2010.09.005
- S. L. Campbell and C. D. Meyer Jr., Generalized inverses of linear transformations, Dover Publications, Inc., New York, 1991. Corrected reprint of the 1979 original. MR 1105324
- Dragan S. Djordjević and Nebojša Č. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010), no. 1, 252–261. MR 2567299, DOI 10.1016/j.jmaa.2009.08.056
- Dragan S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl. 29 (2007), no. 4, 1242–1246. MR 2369293, DOI 10.1137/050638114
- Dragan S. Djordjević and Vladimir Rakočević, Lectures on generalized inverses, University of Niš, Faculty of Sciences and Mathematics, Niš, 2008. MR 2472376
- T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966), 518–521; erratum, ibid. 9 (1966), 249. MR 210720, DOI 10.1137/1009040
- Gene H. Golub and Charles F. Van Loan, Matrix computations, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR 733103
- R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl. 76 (1986), 241–246. MR 830343, DOI 10.1016/0024-3795(86)90226-0
- Saichi Izumino, The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J. (2) 34 (1982), no. 1, 43–52. MR 651705, DOI 10.2748/tmj/1178229307
- J. J. Koliha, Dragan Djordjević, and Dragana Cvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2007), no. 2-3, 371–381. MR 2350664, DOI 10.1016/j.laa.2007.05.012
- C. Radhakrishna Rao and Sujit Kumar Mitra, Generalized inverse of matrices and its applications, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 338013
- W. Sun, Y. Yuan, Optimization Theory and Methods, Science Press, Beijing, 1996.
- Yong Ge Tian, Reverse order laws for the generalized inverses of multiple matrix products, Linear Algebra Appl. 211 (1994), 85–100. Generalized inverses (1993). MR 1295873, DOI 10.1016/0024-3795(94)90084-1
- Hans Joachim Werner, When is $B^-A^-$ a generalized inverse of $AB$?, Linear Algebra Appl. 210 (1994), 255–263. MR 1294779, DOI 10.1016/0024-3795(94)90474-X
- Jie Wang, Hai Yan Zhang, and Guo Xing Ji, A generalized reverse order law for the products of two operators, J. Shaanxi Normal Univ. Nat. Sci. Ed. 38 (2010), no. 4, 13–17 (Chinese, with English and Chinese summaries). MR 2743096
- Hans Joachim Werner, $g$-inverses of matrix products, Data analysis and statistical inference, Eul, Bergisch Gladbach, 1992, pp. 531–546. MR 1248855
- Musheng Wei, Equivalent conditions for generalized inverses of products, Linear Algebra Appl. 266 (1997), 347–363. MR 1473209, DOI 10.1016/S0024-3795(97)00035-9
- Zhiping Xiong and Bing Zheng, The reverse order laws for $\{1,2,3\}$- and $\{1,2,4\}$-inverses of a two-matrix product, Appl. Math. Lett. 21 (2008), no. 7, 649–655. MR 2423040, DOI 10.1016/j.aml.2007.07.007
Bibliographic Information
- Xiaoji Liu
- Affiliation: College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, People’s Republic of China
- Email: xiaojiliu72@yahoo.com.cn
- Shuxia Wu
- Affiliation: College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, People’s Republic of China
- Email: anita623482950@yahoo.com.cn
- Dragana Cvetković-Ilić
- Affiliation: University of Niš, Department of Mathematics, Faculty of Sciences and Mathematics, 18000 Niš, Serbia
- Email: dragana@pmf.ni.ac.rs
- Received by editor(s): April 22, 2011
- Received by editor(s) in revised form: November 9, 2011
- Published electronically: January 11, 2013
- Additional Notes: This work ws supported by Grant No. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 1597-1607
- MSC (2010): Primary 15A09
- DOI: https://doi.org/10.1090/S0025-5718-2013-02660-9
- MathSciNet review: 3042577